crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 763879

Zbornik radova

Autori: Bajer, Dražen; Zorić, Bruno; Martinović, Goran
Naslov: Automatic Design of Radial Basis Function Networks Through Enhanced Differential Evolution
Izvornik: Proceedings of the 10th International Conference on Hybrid Artificial Intelligence Systems, HAIS 2015, Lecture Notes in Computer Science, Vol. 9121 / Onieva, Enrique ; Santos, Igor ; Osaba, Eneko ; Quintián, Héctor ; Corchado, Emilio (ur.). - Springer International Publishing Switzerland , 2015. 244-256 (ISBN: 978-3-319-19643-5).
ISSN: 0302-9743
Skup: International Conference on Hybrid Artificial Intelligence Systems
Mjesto i datum: Bilbao, Španjolska, 22-24.06.2015.
Ključne riječi: Differential evolution; Initial population; k-means; Neural network; Radial basis function
Sažetak:
During the creation of a classification model, it is vital to keep track of numerous parameters and to produce a model based on the limited knowledge inferred often from very confined data. Methods which aid the construction or completely build the classification model automatically, present a fairly common research interest. This paper proposes an approach that employs differential evolution enhanced through the incorporation of additional knowledge concerning the problem in order to design a radial basis neural network. The knowledge is inferred from the unsupervised learning procedure which aims to ensure an initial population of good solutions. Also, the search space is dynamically adjusted i.e. narrowed during runtime in terms of the decision variables count. The results obtained on several datasets suggest that the proposed approach is able to find well performing networks while keeping the structure simple. Furthermore, a comparison with a differential evolution algorithm without the proposed enhancements and a particle swarm optimization algorithm was carried out illustrating the benefits of the proposed approach.
Rad je citiran u
bazama podataka:
Scopus
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Ostalo
Vrsta recenzije: Međunarodna recenzija
Projekt / tema: 165-0362980-2002
Izvorni jezik: ENG
Kategorija: Znanstveni
Znanstvena područja:
Računarstvo
URL Internet adrese: http://link.springer.com/chapter/10.1007%2F978-3-319-19644-2_21
Upisao u CROSBI: Dražen Bajer (drazen.bajer@etfos.hr), 2. Lip. 2015. u 10:02 sati



Verzija za printanje   za tiskati


upomoc
foot_4