Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

The Desulfinylation of Prop-2-enesulfinic Acid: Experimental Results and Mechanistic Theoretical Analysis (CROSBI ID 221547)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Varela-Álvarez, A. ; Markovic, D. ; Sordo, J. A. ; Vogel, P. The Desulfinylation of Prop-2-enesulfinic Acid: Experimental Results and Mechanistic Theoretical Analysis // Journal of the American Chemical Society, 131 (2009), 9547-9561. doi: 10.1021/ja901565s

Podaci o odgovornosti

Varela-Álvarez, A. ; Markovic, D. ; Sordo, J. A. ; Vogel, P.

engleski

The Desulfinylation of Prop-2-enesulfinic Acid: Experimental Results and Mechanistic Theoretical Analysis

The potential energy surfaces of the desulfinylation of prop-2-enesulfinic acid (13) in CH(2)Cl(2) solution at -15 degrees C have been explored by quantum calculations and analyzed with kinetic data obtained for the reaction in absence or presence of additives. Monomeric 13 adopts a preferred conformation with gauche S=O/sigma(C(1)-C(2) bond pairs and the O-H bond pointing toward C(3). It equilibrates with the more stable dimer (13)(2) (at -15 degrees C) formed by two O-H...O=S hydrogen bonds and in which the S=O/sigmaC(1)-C(2) are gauche also, but the SOH moieties are antiperiplanar with respect to sigma(C(1)-C(2)). Dimer (13)(2) undergoes desulfinylation into propene + SO(2) + 13 following a one-step, concerted mechanism. The preferred transition state is a six-membered, chairlike transition structure (C...S elongation and S-O...H...C(3) hydrogen transfer occur in concert) in which the S=O/sigma(C(1)-C(2)) bonds are gauche (S=O adopt pseudoaxial positions). There are at least 48 transition states, each one defining a different pathway, all with similar calculated free energies (DeltaG(double dagger) = 25.3-28.6 kcal/mol), which makes the bimolecular (autocatalyzed) retro-ene elimination of SO(2) competing (entropy factor) with a monomolecular process for which the transition state (calculated DeltaG(double dagger) = 24.3 kcal/mol) implies only one molecule of sulfinic acid. This agrees with the experimental rate law of the reaction which is first order in the concentration of dimer (13)(2). SO(2), CF(3)COOH, and BF(3) x Me(2)O do not catalyze the reaction. In the presence of an excess of BF(3) x Me(2)O the desulfinylation is completely inhibited due to the formation of a stable tetramolecular complex of type (CH(2)=CHCH(2)SO(2)H x BF(3))(2) (18), for which quantum calculations show that the S=O/sigma(C(1)-C(2)) bonds are antiperiplanar whereas the S-OH/sigma(C(1)-C(2)) bonds are gauche. Independently of the additive, the retro-ene eliminations of SO(2) are calculated to be concerted and have transition states adopting six-membered cyclic structures in which S=O and sigma(C(1)-C(2)) are gauche, the S=O interacting with the additive. Preliminary experiments suggested that the thermodynamically unfavored ene reaction of SO(2) with propene can occur at low temperature using 1 equiv of BF(3).

allylic sulfinic acid; ene reaction; computation studies; mechanism

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

131

2009.

9547-9561

objavljeno

0002-7863

10.1021/ja901565s

Povezanost rada

Povezane osobe



Kemija

Poveznice