Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

A new quark-hadron hybrid equation of state for astrophysics - I. High-mass twin compact stars (CROSBI ID 222930)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Benić, Sanjin ; Blaschke, David ; Alvarez-Castillo, David E. ; Fischer, Tobias ; Typel, Stefan A new quark-hadron hybrid equation of state for astrophysics - I. High-mass twin compact stars // Astronomy & astrophysics, 577 (2015), A40-1-A40-8. doi: 10.1051/0004-6361/201425318

Podaci o odgovornosti

Benić, Sanjin ; Blaschke, David ; Alvarez-Castillo, David E. ; Fischer, Tobias ; Typel, Stefan

engleski

A new quark-hadron hybrid equation of state for astrophysics - I. High-mass twin compact stars

Aims. We present a new microscopic hadron-quark hybrid equation of state model for astrophysical applications, from which compact hybrid star configurations are constructed. These are composed of a quark core and a hadronic shell with a first-order phase transition at their interface. The resulting mass-radius relations are in accordance with the latest astrophysical constraints. Methods. The quark matter description is based on a quantum chromodynamics (QCD) motivated chiral approach with higher-order quark interactions in the Dirac scalar and vector coupling channels. For hadronic matter we select a relativistic mean-field equation of state with density-dependent couplings. Since the nucleons are treated in the quasi-particle framework, an excluded volume correction has been included for the nuclear equation of state at suprasaturation density which takes into account the finite size of the nucleons. Results. These novel aspects, excluded volume in the hadronic phase and the higher-order repulsive interactions in the quark phase, lead to a strong first-order phase transition with large latent heat, i.e. the energy-density jump at the phase transition, which fulfils a criterion for a disconnected third-family branch of compact stars in the mass-radius relationship. These twin stars appear at high masses (~2 M_sun) that are relevant for current observations of high-mass pulsars. Conclusions. This analysis offers a unique possibility by radius observations of compact stars to probe the QCD phase diagram at zero temperature and large chemical potential and even to support the existence of a critical point in the QCD phase diagram.

stars: neutron ; stars: interiors ; dense matter ; equation of state

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

577

2015.

A40-1-A40-8

objavljeno

0004-6361

10.1051/0004-6361/201425318

Povezanost rada

Fizika

Poveznice
Indeksiranost