crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 85085

Zbornik radova

Autori: Matetić, Maja; Ribarić, Slobodan; Ipšić, Ivo
Naslov: LABAQM - A System for Qualitative Modelling and Analysis of Animal Behaviour
Izvornik: Proceedings of the 13th International Conference on Information and Intelligent Systems, IIS 2002Varaždin :
Skup: 13th International Conference on Information and Intelligent Systems, IIS 2002
Mjesto i datum: Varaždin, Hrvatska, 25-27.09.2002.
Ključne riječi: dynamic vision system ; qualitative modelling ; conceptual clustering ; hidden Markov models of characteristic behaviours.
Sažetak:
Tracking of a laboratory animal and its behaviour interpretation based on frame sequence analysis have been traditionally quantitative and typically generates large amounts of temporally evolving data. In our work we are dealing with higher-level approaches such as conceptual clustering and qualitative modelling in order to represent data obtained by tracking. We present the LABAQM system developed for the analysis of laboratory animal behaviours. It is based on qualitative modelling of animal motions. We are dealing with the cognitive phase of the laboratory animal behaviour analysis as a part of the pharmacological experiments. The system is based on the quantitative data from the tracking application and incomplete domain background knowledge. The LABAQM system operates in two main phases: behaviour learning and behaviour analysis. The behaviour learning and behaviour analysis phase are based on symbol sequences, obtained by the transformation of the quantitative data. Behaviour learning phase includes supervised learning procedure, unsupervised learning procedure and their combination. The fusion of supervised and unsupervised learning procedures produces more robust models of characteristic behaviours, which are used in the behaviour analysis phase.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Cjeloviti rad (više od 1500 riječi)
Vrsta recenzije: Domaća recenzija
Projekt / tema: 009033
Izvorni jezik: ENG
Kategorija: Znanstveni
Znanstvena područja:
Računarstvo



  Verzija za printanje   za tiskati


upomoc
foot_4