Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Horizontal Accuracy Assessment of PlanetScope, RapidEye and WorldView-2 Satellite Imagery (CROSBI ID 664049)

Prilog sa skupa u zborniku | izvorni znanstveni rad | međunarodna recenzija

Dobrinić, Dino ; Gašparović, Mateo ; Župan, Robert Horizontal Accuracy Assessment of PlanetScope, RapidEye and WorldView-2 Satellite Imagery // 18th International Multidisciplinary Scientific Geoconference SGEM 2018, Conference Proceedings, Volume 18, Issue 2.3. Sofija: Stef92 Technology, 2018. str. 129-136 doi: 10.5593/sgem2018/2.3

Podaci o odgovornosti

Dobrinić, Dino ; Gašparović, Mateo ; Župan, Robert

engleski

Horizontal Accuracy Assessment of PlanetScope, RapidEye and WorldView-2 Satellite Imagery

Satellite imagery with different spatial resolutions and global daily revisit time provide much information of earth surfaces on a large scale in a short time. Thereby it is necessary to determine the horizontal accuracy of the satellite imagery to enable the possibility of their future everyday use in different application fields like environmental assessment, urban monitoring, forestry management, etc. In this research multispectral (MS) imagery from PlanetScope (PS), RapidEye (RE) and WorldView-2 (WV2) satellites was used for horizontal accuracy assessment. The imagery was obtained at different processing levels (basic – non-orthorectified, ortho – orthorectified). The study area is in Zagreb, the capital city of Croatia. Accuracy assessment was calculated on the 29 randomly distributed control points measured with Topcon HiPer SR receiver connected to Croatian Positioning System, which horizontal accuracy is around 2 cm. PS source imagery (PSbasic) with a spatial resolution of 3 m, orthorectified PS imagery (PSortho) with a spatial resolution of 3.7 m and RE ortho tile (REortho) with a spatial resolution of 5 m were obtained through Planet Research and Education program. WV2 OrthoReady Standard (WV2ORS2A) with a spatial resolution of 2 m was obtained within Geospatial monitoring of green infrastructure by means of terrestrial, airborne and satellite imagery (GEMINI) project. WV2ORS2A imagery was orthorectified (WV2ortho) with Orpheo ToolBox based on the global Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). Highest accuracy has achieved a WV2ortho image with RMSE of 3.16 m, while lowest accuracy has WV2ORS2A with RMSE of 9.52 m. If we compare source imagery, PSbasic with a spatial resolution of 3.7 m has better accuracy then WV2ORS2A with a spatial resolution of 2 m. When comparing downloaded orthorectified imagery from Planet website, PSortho has better accuracy than REortho (RMSE of 4.80 m against RMSE value around 5.40 m). It must be emphasised that with an orthorectification accuracy improves significantly. PSortho has almost 1.5 higher accuracy than PSbasic, while WV2ortho image orthorectified with SRTM DEM has 3 times higher accuracy than WV2ORS2A. A further investigation for orthorectification with another freely available DEMs and afterwards geometric correction of satellite imagery would be interesting for using satellite imagery in precise mapping applications.

remote sensing, satellite imagery, accuracy assessment, orthorectification.

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

129-136.

2018.

objavljeno

10.5593/sgem2018/2.3

Podaci o matičnoj publikaciji

18th International Multidisciplinary Scientific Geoconference SGEM 2018, Conference Proceedings, Volume 18, Issue 2.3

Sofija: Stef92 Technology

978-619-7408-41-6

1314-2704

Podaci o skupu

18th International Multidisciplinary Scientific GeoConference (SGEM 2018)

predavanje

02.07.2018-08.07.2018

Albena, Bugarska

Povezanost rada

Geodezija

Poveznice
Indeksiranost