Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Computational issues in the determination of solute discharge moments and implications for comparison to analytical solutions (CROSBI ID 97257)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Hassan, A.E. ; Andricevic, Roko ; Cvetkovic, V. Computational issues in the determination of solute discharge moments and implications for comparison to analytical solutions // Advances in water resources, 24 (2001), 6; 607-619-x

Podaci o odgovornosti

Hassan, A.E. ; Andricevic, Roko ; Cvetkovic, V.

engleski

Computational issues in the determination of solute discharge moments and implications for comparison to analytical solutions

Solute discharge moments (mean and variance) are computed using numerical modeling of flow and advective transport in two-dimensional heterogeneous aquifers and are compared to theoretical results, The solute discharge quantifies the temporal evolution of the total contaminant mass crossing a certain compliance boundary. In addition to analyzing the solute discharge moments within a classical absolute dispersion framework, we also analyze relative dispersion formulation, whereby plume meandering (deviation from mean flow path caused by velocity variations at scales larger than plume size) is removed. This study addresses some important issues related to the computation of solute discharge moments from random walk particle tracking experiments, and highlights some of the important differences between absolute and relative dispersion frameworks. Relative dispersion formulation produces maximum uncertainty that coincides with the peak mean discharge. Absolute dispersion, however, results in earlier arrival of the uncertainty peak as compared to the first moment peak. Simulations show that the standard deviation of solute discharge in a relative dispersion framework requires increasingly large temporal sampling windows to smooth out some of the large fluctuations in breakthrough curves associated with advective transport. Using smoothing techniques in particle tracking to distribute the particle mass over a volume rather than at a point significantly reduces the noise in the numerical simulations and removes the need to use large temporal windows. Same effect can be obtained by adding a local dispersion process to the particle tracking experiments used to model advective transport. The effect of the temporal sampling window bears some relevance and important consequences for evaluating risk-related parameters. The expected value of peak solute discharge and its standard deviation are very sensitive to this sampling window and so will be the risk distribution relying on such numerical models. (C) 2001 Elsevier Science Ltd. AH rights reserved.

Solute discharge; Particle tracking; Temporal sampling; Advective transport; Numerical simulation

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

24 (6)

2001.

607-619-x

objavljeno

0309-1708

Povezanost rada

Građevinarstvo

Indeksiranost