Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Mixed means over balls and annuli and lower bounds for operator norms of maximal functions (CROSBI ID 499092)

Prilog sa skupa u zborniku | sažetak izlaganja sa skupa | međunarodna recenzija

Čižmešija, Aleksandra Mixed means over balls and annuli and lower bounds for operator norms of maximal functions // Function Spaces, Differential Operators and Nonlinear Analysis FSDONA 2004. Plzeň: Zapadnočeska Univerzita v Plzni, 2004. str. 40-x

Podaci o odgovornosti

Čižmešija, Aleksandra

engleski

Mixed means over balls and annuli and lower bounds for operator norms of maximal functions

We prove mixed-means inequalities for integral means of arbitrary real order, where one of the means is taken over the ball in R^n centered at x and of radius delta*x, delta>0. From this result we deduce the operator norm of the operator S_delta which averages a function |f| from L^p(R^n) over the same balls, introduced by M. Christ and L. Grafakos (Hardy type inequality). We also obtain the operator norm of the related geometric mean operator (Carleman type inequality). Moreover, we indicate analogous results for annuli and discuss estimations related to Hardy-Littlewood and spherical maximal functions.

mixed means; integral means; balls and annuli; potential weights; Hardy's inequality; Hardy-Littlewood maximal function; spherical maximal function

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

40-x.

2004.

objavljeno

Podaci o matičnoj publikaciji

Plzeň: Zapadnočeska Univerzita v Plzni

Podaci o skupu

predavanje

27.05.2004-02.06.2004

Svratka, Češka Republika

Povezanost rada

Matematika