Mixed means over balls and annuli and lower bounds for operator norms of maximal functions (CROSBI ID 499092)
Prilog sa skupa u zborniku | sažetak izlaganja sa skupa | međunarodna recenzija
Podaci o odgovornosti
Čižmešija, Aleksandra
engleski
Mixed means over balls and annuli and lower bounds for operator norms of maximal functions
We prove mixed-means inequalities for integral means of arbitrary real order, where one of the means is taken over the ball in R^n centered at x and of radius delta*x, delta>0. From this result we deduce the operator norm of the operator S_delta which averages a function |f| from L^p(R^n) over the same balls, introduced by M. Christ and L. Grafakos (Hardy type inequality). We also obtain the operator norm of the related geometric mean operator (Carleman type inequality). Moreover, we indicate analogous results for annuli and discuss estimations related to Hardy-Littlewood and spherical maximal functions.
mixed means; integral means; balls and annuli; potential weights; Hardy's inequality; Hardy-Littlewood maximal function; spherical maximal function
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
Podaci o prilogu
40-x.
2004.
objavljeno
Podaci o matičnoj publikaciji
Plzeň: Zapadnočeska Univerzita v Plzni
Podaci o skupu
predavanje
27.05.2004-02.06.2004
Svratka, Češka Republika