crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 373307

Časopis

Autori: Lela, Branimir; Bajić, Dražen; Jozić, Sonja
Naslov: Regression analysis, support vector machines and Bayesian neural network approaches to modeling surface roughness in face milling
Izvornik: International Journal of Advanced Manufacturing Technology (0268-3768) 42 (2009), 11-12; 1082-1088
Vrsta rada: članak
Ključne riječi: Face milling; Surface roughness; Regression; Support Vector Machines; Bayesian neural network
Sažetak:
This study examines the influence of cutting speed, feed and depth of cut on surface roughness in face milling process. Three different modeling methodologies, namely regression analysis (RA), support vector machines (SVM) and Bayesian neural network (BNN), have been applied to data experimentally determined by means of the design of experiment (DOE). The results obtained by the models have been compared. All three models have the relative prediction error below 8 %. The best prediction of surface roughness shows BNN model with the average relative prediction error of 6.1 %. The research has shown that, when the training dataset is small, both BNN and SVR modeling methodologies are comparable with RA methodology and, furthermore, they can even offer better results. Regarding the influence of the examined cutting parameters on the surface roughness, it has been shown that the feed has the largest affect on it and the depth of cut the least.
Projekt / tema: 023-0692976-1742, 023-0231926-1748
Izvorni jezik: ENG
Rad je indeksiran u
bazama podataka:
Current Contents Connect (CCC)
Scopus
SCI-EXP, SSCI i/ili A&HCI
Science Citation Index Expanded (SCI-EXP) (sastavni dio Web of Science Core Collectiona)
Kategorija: Znanstveni
Znanstvena područja:
Strojarstvo
Broj citata:
Altmetric:
DOI: 10.1007/s00170-008-1678-z
URL cjelovitog teksta:
Google Scholar: Regression analysis, support vector machines and Bayesian neural network approaches to modeling surface roughness in face milling
Upisao u CROSBI: sjozic@fesb.hr (sjozic@fesb.hr), 26. Stu. 2008. u 14:36 sati



  Verzija za printanje   za tiskati


upomoc
foot_4