crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 397832

Zbornik radova

Autori: Matijević, Vlasta
Naslov: On covering maps over the product of two solenoids
Izvornik: 4th Croatian Mathematical Congress CroMC2008 AbstractsOsijek :
Skup: 4th Croatian Mathematical Congress CroMC2008
Mjesto i datum: Osijek, Hrvatska, 17-20.06.2008.
Ključne riječi: covering map; compact abelian group; solenoid; Klein bottle; weak solenoidal space
Sažetak:
For a sequence p=(p_{;i};) of positive integers p_{;i};, let Σ (p) denote a solenoid obtained by the sequence p. We consider finite-sheeted covering maps over the product Σ (p)×Σ (r) of two solenoids and in some particular cases examine under which conditions total spaces are homeomorphic to the base space Σ (p)×Σ (r). We show that a compact connected 2-dimensional abelian group X covers a Klein bottle weak solenoidal space (i.e. the inverse limit of an inverse sequence, where each term is a Klein bottle K and each bonding map is a covering map over K) if and only if X covers the product Σ (p)×Σ (r) of two solenoids and at least one of the sequences p and r consists of odd integers. This enables us to answer the following question: Does every compact connected 2-dimensional abelian group X cover Klein bottle weak solenoidal spaces ? We answer the question in the negative. Moreover, we give an example of a group that covers groups with any finite number of sheets but does not cover any Klein bottle weak solenoidal space.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Sažetak
Vrsta recenzije: Međunarodna recenzija
Projekt / tema: 177-0372791-0886
Izvorni jezik: ENG
Kategorija: Znanstveni
Znanstvena područja:
Matematika
Upisao u CROSBI: vlasta@pmfst.hr (vlasta@pmfst.hr), 1. Lip. 2009. u 18:44 sati



Verzija za printanje   za tiskati


upomoc
foot_4