Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Exploring atmospheric boundary layer characteristics in a severe SO2 episode in the north-eastern Adriatic (CROSBI ID 154693)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Telišman Prtenjak, Maja ; Jeričević, Amela ; Kraljević, Lukša ; Herceg Bulić, Ivana ; Nitis, Theodoros ; Bencetić Klaić, Zvjezdana Exploring atmospheric boundary layer characteristics in a severe SO2 episode in the north-eastern Adriatic // Atmospheric chemistry and physics, 9 (2009), 13; 4467-4483

Podaci o odgovornosti

Telišman Prtenjak, Maja ; Jeričević, Amela ; Kraljević, Lukša ; Herceg Bulić, Ivana ; Nitis, Theodoros ; Bencetić Klaić, Zvjezdana

engleski

Exploring atmospheric boundary layer characteristics in a severe SO2 episode in the north-eastern Adriatic

Stable atmospheric conditions are often connected with the occurrence of high pollution episodes especially in urban or industrial areas. In this work we investigate a severe SO2 episode observed on 3– 5 February 2002 in a coastal industrial town of Rijeka, Croatia, where very high daily mean concentrations (up to 353.5μ gm− 3) were measured. The episode occurred under high air pressure conditions, which were accompanied with a fog and low wind speeds. Three air quality models (50-km EMEP model, 10-km EMEP4HR model and 1-km CAMx model) were used to simulate SO2 concentrations fields and to evaluate the relative contribution of distant and local pollution sources to observed concentrations. Results suggest that the episode was caused predominately by local sources. Furthermore, using three-dimensional, higher-order turbulence closure mesoscale meteorological model (WRF), the wind regimes and thermo-dynamical structure of the lower troposphere above the greater Rijeka area (GRA) were examined in detail. Modelled atmospheric fields suggest several factors whose simultaneous acting was responsible for elevated SO2 concentrations. Established small scale wind directions supported the transport of air from nearby industrial areas with major pollution sources towards Rijeka. This transport was associated with strong, ground-based temperature inversion and correspondingly, very low mixing layer (at most up to about 140m). Additionally, the surface winds in Rijeka were light or almost calm thus, preventing ventilation of polluted air. Finally, a vertical circulation cell formed between the mainland and a nearby island, supported the air subsidence and the increase of static stability.

air quality modeling; EMEP; CAMx; mesoscale meteorological model; WRF

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

9 (13)

2009.

4467-4483

objavljeno

1680-7316

Povezanost rada

Geologija

Indeksiranost