crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 436934

Časopis

Autori: Antonić, Nenad; Burazin, Krešimir
Naslov: Intrinsic boundary conditions for Friedrichs systems
Izvornik: Communications in partial differential equations (0360-5302) 35 (2010), 9; 1690-1715
Vrsta rada: članak
Ključne riječi: symmetric positive system; first-order system of pde's; Kre\u\i n space; boundary operator
Sažetak:
The admissible boundary conditions for symmetric positive systems of first-order linear partial differential equations, originally introduced by Friedrichs (1958), were recently related to three different sets of intrinsic geometric conditions in graph spaces (Ern, Guermond and Caplain, 2007). We rewrite their cone formalism in terms of an indefinite inner product space, which in a quotient by its isotropic part gives a Kre\u\i n space. This new viewpoint allows us to show that the three sets of intrinsic boundary conditions are actually equivalent, which will hopefully facilitate further investigation of their precise relation to the original Friedrichs boundary conditions.
Projekt / tema: 037-0372787-2795, 037-1193086-3226
Izvorni jezik: ENG
Rad je indeksiran u
bazama podataka:
Current Contents Connect (CCC)
Scopus
SCI-EXP, SSCI i/ili A&HCI
Science Citation Index Expanded (SCI-EXP) (sastavni dio Web of Science Core Collectiona)
Kategorija: Znanstveni
Znanstvena područja:
Matematika
URL Internet adrese: http://www.informaworld.com/smpp/content~db=all~content=a925291934~frm=titlelink
http://www.informaworld.com/smpp/content~db=all~content=a925291934~frm=abslink
Broj citata:
Altmetric:
DOI: 10.1080/03605300903540927
URL cjelovitog teksta:
Google Scholar: Intrinsic boundary conditions for Friedrichs systems
Upisao u CROSBI: nenad@math.hr (nenad@math.hr), 9. Pro. 2009. u 14:00 sati



  Verzija za printanje   za tiskati


upomoc
foot_4