crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 486108

Zbornik radova

Autori: Bajić, Dražen; Jozić, Sonja; Celent Luka
Naslov: Flank wear prediction in end milling using regression analysis and radial basis function neural networks
Izvornik: IN-TECH 2010 / Jan Kudlaček, Branimir Barišić, Xavier Velay, Kazuhiro Ohkura (ur.). - Prag : Tisk AS s.r.o., Jaromer , 2010. 250-254 (ISBN: 978-80-904502-2-6).
Skup: International Conference on Innovative Technologies
Mjesto i datum: Prag, Češka Republika, 14.09.2010. do 16.09.2010.
Ključne riječi: flank wear; end milling; regression analysis; radial basis function neural network
Sažetak:
End milling is commonly used machining process for the manufacturing of dies and molds, as well as numerous very high precision machine components. Flank wear develops due to abrasion of the cutting tool edge against the machined workpiece surface and is measured by the average width of wear land on the primary clearance face. This study presents the prediction of flank wear in end milling process. Machining parameters (cutting speed, vc, feed per tooth, ft, radial depth of cut, ae) and machining time, t, have been used as input variables. Since the flank wear has an influence on surface quality, the surface roughness has also been observed in this study. Regression analysis and radial basis function neural networks have been applied to data experimentally determined by means of the design of experiment and the effective mathematical models have been developed. The results obtained by the models have been compared. Both models have the relative prediction error below 7.66 %. The best prediction of flank wear and surface roughness shows radial basis function neural network model with the average relative prediction error of 4.48 % and 4.47 %, respectively.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Cjeloviti rad (više od 1500 riječi)
Vrsta recenzije: Međunarodna recenzija
Projekt / tema: 023-0692976-1742
Izvorni jezik: ENG
Kategorija: Znanstveni
Znanstvena područja:
Strojarstvo
Upisao u CROSBI: sjozic@fesb.hr (sjozic@fesb.hr), 13. Lis. 2010. u 12:13 sati



Verzija za printanje   za tiskati


upomoc
foot_4