crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 545754

Časopis

Autori: Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Mihalić, Snježana; Abolmasov, Biljana
Naslov: Landslide Assessment of the Starča Basin (Croatia) Using Machine-Learning Algorithms
( Landslide Assessment of the Starča Basin (Croatia) Using Machine-Learning Algorithms )
Izvornik: Acta Geotechnica Slovenica (1854-0171) 2011 (2011), 2; 45-55
Vrsta rada: članak
Ključne riječi: landslides; support vector machines; decision trees classifier; Starča Basin
( landslides; support vector machines; decision trees classifier; Starča Basin )
Sažetak:
In this research, machine-learning algorithms were compared in a landslide-susceptibility assessment. Given the input set of GIS layers for the Starča Basin, which included geological, hydrogeological, morphometric, and environmental data, a classification task was performed to classify the grid cells to: (i) landslide and non-landslide cases, (ii) different landslide types (dormant and abandoned, stabilized and suspended, reactivated). After finding the optimal parameters, C4.5 decision trees and Support Vector Machines were compared using kappa statistics. The obtained results showed that classifiers were able to distinguish between the different landslide types better than between the landslide and non-landslide instances. In addition, the Support Vector Machines classifier performed slightly better than the C4.5 in all the experiments. Promising results were achieved when classifying the grid cells into different landslide types using 20% of all the available landslide data for the model creation, reaching kappa values of about 0.65 for both algorithms.
Projekt / tema: 195-1951825-1507
Izvorni jezik: eng
Rad je indeksiran u
bazama podataka:
Scopus
SCI-EXP, SSCI i/ili A&HCI
Science Citation Index Expanded (SCI-EXP) (sastavni dio Web of Science Core Collectiona)
Kategorija: Znanstveni
Znanstvena područja:
Rudarstvo, nafta i geološko inženjerstvo
URL cjelovitog teksta:
Google Scholar: Landslide Assessment of the Starča Basin (Croatia) Using Machine-Learning Algorithms
Upisao u CROSBI: smihalic@rgn.hr (smihalic@rgn.hr), 19. Stu. 2011. u 04:57 sati



Verzija za printanje   za tiskati


upomoc
foot_4