crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 585783

Zbornik radova

Autori: Lukić, Ivica; Köhler Mirko; Slavek Ninoslav
Naslov: The Segmentation of Data Set Area Method in the Clustering of Uncertain Data
Izvornik: Proceedings of the jubilee 35th International ICT Convention – MIPRO 2012 / Petar B. (ur.). - Opatija : Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO , 2012. 420-425 (ISBN: 978-953-233-069-4).
Skup: The jubilee 35th International ICT Convention – MIPRO 2012
Mjesto i datum: Opatija, Hrvatska, 21-25.06.2012.
Ključne riječi: Clustering; data mining; expected distance; pruning; uncertain data
Sažetak:
The clustering of uncertain objects is a well researched field. This paper is concerned with the clustering of uncertain objects with 2D location uncertainties, due to object movements. The location of a moving object is reported periodically, thus the location is uncertain and is described using a probability density function. Data on moving objects and their locations is placed in distributed databases. The number of objects in a database can be large, thus their proper clustering is a challenging task. A survey of existing clustering methods is given in this paper and a new clustering method is proposed. This method is called Segmentation of Data Set Area. Using this method the execution time of clustering objects is shortened, compared to previous methods. In this method, the data set area is divided into sixteen segments. Each segment is observed separately and only the clusters and objects in a given segment and its neighbouring segments are observed. Experiments were conducted to evaluate the effectiveness of the new method. These experiments proved that this method outperformed previous methods by up to 28% in computing time whilst using the same memory space.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Cjeloviti rad (više od 1500 riječi)
Vrsta recenzije: Međunarodna recenzija
Izvorni jezik: ENG
Kategorija: Znanstveni
Znanstvena područja:
Računarstvo
Upisao u CROSBI: ilukic@etfos.hr (ilukic@etfos.hr), 2. Srp. 2012. u 14:52 sati



Verzija za printanje   za tiskati


upomoc
foot_4