crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 814138

Časopis

Autori: Ćesić, Josip; Marković, Ivan; Cvišić, Igor; Petrović, Ivan
Naslov: Radar and stereo vision fusion for multitarget tracking on the special Euclidean group
Izvornik: Robotics and autonomous systems (0921-8890) 83 (2016); 338-348
Vrsta rada: članak
Ključne riječi: advanced driver assistance systems ; detection and tracking of moving objects ; joint integrated probabilistic data association ; radar ; stereo camera
Sažetak:
Reliable scene analysis, under varying conditions, is an essential task in nearly any assistance or autonomous system application, and advanced driver assistance systems (ADAS) are no exception. ADAS commonly involve adaptive cruise control, collision avoidance, lane change assistance, traffic sign recognition, and parking assistance—with the ultimate goal of producing a fully autonomous vehicle. The present paper addresses detection and tracking of moving objects within the context of ADAS. We use a multisensor setup consisting of a radar and a stereo camera mounted on top of a vehicle. We propose to model the sensors uncertainty in polar coordinates on Lie Groups and perform the objects state filtering on Lie groups, specifically, on the product of two special Euclidean groups, i.e., SE(2) 2 . To this end, we derive the designed filter within the framework of the extended Kalman filter on Lie groups. We assert that the proposed approach results with more accurate uncertainty modeling, since used sensors exhibit contrasting measurement uncertainty characteristics and the predicted target motions result with banana-shaped uncertainty contours. We believe that accurate uncertainty modeling is an important ADAS topic, especially when safety applications are concerned. To solve the multitarget tracking problem, we use the joint integrated probabilistic data association filter and present necessary modifications in order to use it on Lie groups. The proposed approach is tested on a real-world dataset collected with the described multisensor setup in urban traffic scenarios.
Izvorni jezik: ENG
Rad je indeksiran u
bazama podataka:
Current Contents Connect (CCC)
Scopus
SCI-EXP, SSCI i/ili A&HCI
Science Citation Index Expanded (SCI-EXP) (sastavni dio Web of Science Core Collectiona)
Kategorija: Znanstveni
Znanstvena područja:
Elektrotehnika,Računarstvo,Temeljne tehničke znanosti
Puni text rada: 814138.main.pdf (tekst priložen 22. Kol. 2016. u 11:58 sati)
URL Internet adrese: http://www.sciencedirect.com/science/article/pii/S0921889015303286
Broj citata:
Altmetric:
DOI: 10.1016/j.robot.2016.05.001
URL cjelovitog teksta:
Google Scholar: Radar and stereo vision fusion for multitarget tracking on the special Euclidean group
Upisao u CROSBI: Ivan Marković (ivan.markovic@fer.hr), 6. Svi. 2016. u 08:05 sati



  Verzija za printanje   za tiskati


upomoc
foot_4