crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 828093

Zbornik radova

Autori: Valčić, Marko; Prpić-Oršić, Jasna; Vučinić, Dean
Naslov: Application of pattern recognition method for estimating wind loads on ships and marine objects
( Application of pattern recognition method for estimating wind loads on ships and marine objects )
Izvornik:
Skup: 10th International Conference on Advanced Computational Engineering and Experimenting ACE-X 2016
Mjesto i datum: Split, Hrvatska, 3.-6.7.2016.
Ključne riječi: pattern recognition; wind loads; ships
( pattern recognition; wind loads; ships )
Sažetak:
This paper presents an extension of application capabilities of elliptic Fourier descriptors (EFDs) from the usual pattern recognition and classification problems to problems of very complex nonlinear multivariable approximations of multi-input and multi-output (MIMO) functions. Wind loads on ships and marine objects are a complicated phenomenon because of the complex configuration of the above-water part of the structure. The proposed approach of wind load estimation method presented in this paper consists of four basic parts: acquisition and pre-processing of vessel images ; image editing ; data preparation for neural network training ; validating and testing of created neural network. The method is based on elliptic Fourier features of a closed contour which are used for ship frontal and lateral closed contour representation. Therefore, this approach takes into account all aspects of the variability of the above-water frontal and lateral ship profile. For the purpose of multivariate nonlinear regression, the generalized regression radial basis neural network is trained by elliptic Fourier features of closed contours and wind load data derived from wind tunnel tests. The trained neural network is used for the estimation of non-dimensional wind load coefficients. The results for a group of car carriers are presented and compared with the experimental data.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: PP prezentacija
Vrsta recenzije: Međunarodna recenzija
Projekt / tema: HRZZ-IP-2013-11-8722
Izvorni jezik: eng
Kategorija: Znanstveni
Znanstvena područja:
Brodogradnja
Upisao u CROSBI: Marko Valčić (marko.valcic@uniri.hr), 19. Srp. 2016. u 22:09 sati



Verzija za printanje   za tiskati


upomoc
foot_4