crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 877707

Časopis

Autori: Valčić, Marko; Prpić-Oršić, Jasna; Vučinić, Dean
Naslov: Application of a pattern recognition method to estimate wind loads on ships and marine objects = Anwendung eines Erkennungsmodells zur Abschätzung von Windlasten auf Schiffe und Marineobjekte
( Application of a pattern recognition method to estimate wind loads on ships and marine objects )
Izvornik: Materialwissenschaft und Werkstofftechnik (0933-5137) 48 (2017), 5; 387-399
Vrsta rada: članak
Ključne riječi: Wind loads, Pattern recognition, Elliptic Fourier descriptors, Neural network
( Wind loads, Pattern recognition, Elliptic Fourier descriptors, Neural network )
Sažetak:
This paper presents an extension of the application capabilities of elliptic Fourier descriptors from the usual pattern recognition and classification problems to problems of very complex nonlinear multivariable approximations of multi-input and multi-output functions. Wind loads on ships and marine objects are a complicated phenomenon because of the complex configuration of the above-water part of the structure. The proposed approach of the wind load estimation method presented in this paper consists of four basic parts: acquisition and pre-processing of vessel images ; image editing ; data preparation for neural network training ; validating and testing of the created neural network. The method is based on elliptic Fourier features of a closed contour which are used for the frontal and lateral closed contour representation of ships. Therefore, this approach takes into account all aspects of the variability of the above-water frontal and lateral ship profile. For the purpose of multivariate nonlinear regression, the generalized regression radial basis neural network is trained by elliptic Fourier features of closed contours and wind load data derived from wind tunnel tests. The trained neural network is used for the estimation of non-dimensional wind load coefficients. The results for a group of car carriers are presented and compared with the experimental data.
Projekt / tema: HRZZ-IP-2013-11-8722
Izvorni jezik: eng
Rad je indeksiran u
bazama podataka:
Current Contents Connect (CCC)
Scopus
SCI-EXP, SSCI i/ili A&HCI
Science Citation Index Expanded (SCI-EXP) (sastavni dio Web of Science Core Collectiona)
Kategorija: Znanstveni
Znanstvena područja:
Brodogradnja,Tehnologija prometa i transport,Temeljne tehničke znanosti
URL Internet adrese: http://onlinelibrary.wiley.com/doi/10.1002/mawe.201700009/full
http://onlinelibrary.wiley.com/doi/10.1002/mawe.201700009/abstract
Broj citata:
Altmetric:
DOI: 10.1002/mawe.201700009
URL cjelovitog teksta:
Google Scholar: Application of a pattern recognition method to estimate wind loads on ships and marine objects = Anwendung eines Erkennungsmodells zur Abschätzung von Windlasten auf Schiffe und Marineobjekte
Upisao u CROSBI: Marko Valčić (marko.valcic@uniri.hr), 28. Svi. 2017. u 12:34 sati
Napomene:
S.I.: Advanced Computational Engineering and Experimenting (ACE-X 2016) (odabrana sudjelovanja).



  Verzija za printanje   za tiskati


upomoc
foot_4