crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 895952

Zbornik radova

Autori: Veić, Mario; Jozić, Sonja; Bajić Dražen
Naslov: Development and optimization of surface roughness predictive models in turning super duplex stainless steel by using artificial intelligence methods
Izvornik: MECHANICAL TECHNOLOGIES AND STRUCTURAL MATERIALS / Jozić, Sonja ; Lela, Branimir (ur.). - Split : Croatian society for mechanical technologies , 2017. 149-158.
Skup: 7th International Conference, Mechanical Technology and Structural Materials 2017
Mjesto i datum: Split, Croatia, 21. - 22.09.2017
Ključne riječi: Super duplex stainless steel, ANFIS, Genethic algorithm, Response surface method, Surface roughness
Sažetak:
Super duplex stainless steels are alloys that have good corrosion resistance properties and are intended for applications in corrosive environments. Due to their chemical composition and microstructure providing high strength and thermal resistance as well as high ductility, the machinability of these alloys is difficult, resulting in longer production cycles and higher costs in terms of more frequent replacement of tools. In this paper the machinability of the superduplex EN 1.4410 was investigated in the machining process without using a cooling and lubricating medium. Experimental data were generated using the range of selected input parameters and correspondingly analyzed surface roughness as output data. Predictive and mathematical models were developed that were used in the optimization process to minimize the surface roughness. The influence of input parameters on surface roughness was analyzed and the optimum values of the input parameters were obtained using the genetic algorithm. The accuracy of developed predictive models was analyzed using different sets of experimental data. Developed predictive models could be in practice used by operators while selecting optimal processing parameters to achieve the surface roughness value requested by the constructor.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Cjeloviti rad (više od 1500 riječi)
Vrsta recenzije: Međunarodna recenzija
Izvorni jezik: ENG
Kategorija: Znanstveni
Znanstvena područja:
Strojarstvo
Upisao u CROSBI: Mario Veić (Mario.Veic.Ivan@fesb.hr), 3. Lis. 2017. u 12:02 sati



Verzija za printanje   za tiskati


upomoc
foot_4