crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 897136

Zbornik radova

Autori: Krkač, Martin; Mihalić Arbanas, Snježana; Arbanas, Željko; Bernat Gazibara, Sanja; Sečanj, Marin
Naslov: Prediction of the Kostanjek Landslide Movements Based on Monitoring Results Using Random Forests Technique
( Prediction of the Kostanjek Landslide Movements Based on Monitoring Results Using Random Forests Technique )
Izvornik: Advancing Culture of Living with Landslides, Volume 3, Advances in Landslide Technology / Mikoš, Matjaž ; Arbanas, Željko ; Yin, Yueping ; Sassa, Kyoji (ur.). - Cham : Springer , 2017. 267-275 (ISBN: 978-3-319-53486-2).
Skup: 4th World Landslide Forum
Mjesto i datum: Ljubljana, Slovenija, 29.5.-2.6.2017.
Ključne riječi: Kostanjek landslide ; Movement prediction ; Random forests ; Landslide monitoring
( Kostanjek landslide ; Movement prediction ; Random forests ; Landslide monitoring )
Sažetak:
Prediction of landslide movements with practical application for landslide risk mitigation is a challenge for scientists. This study presents a methodology for prediction of landslide movements using random forests, a machine learning algorithm based on regression trees. The prediction method was established based on a time series data gathered by two years of monitoring on landslide movement, groundwater level and precipitation by the Kostanjek landslide monitoring system and nearby meteorological stations in Zagreb (Croatia). Because of complex relations between precipitations and groundwater levels, the process of landslide movement prediction is divided into two separate models: (1) model for prediction of groundwater levels from precipitation data ; and (2) model for prediction of landslide movements from groundwater level data. In a groundwater level prediction model, 75 parameters were used as predictors, calculated from precipitation and evapotranspiration data. In the landslide movement prediction model, 10 parameters calculated from groundwater level data were used as predictors. Model validation was performed through the prediction of groundwater levels and prediction of landslide movements for the periods from 10 to 90 days. The validation results show the capability of the model to predict the evolution of daily displacements, from predicted variations of groundwater levels, for the period up to 30 days.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Cjeloviti rad (više od 1500 riječi)
Vrsta recenzije: Međunarodna recenzija
Izvorni jezik: eng
Kategorija: Znanstveni
Znanstvena područja:
Rudarstvo, nafta i geološko inženjerstvo
Upisao u CROSBI: Martin Krkač (martin.krkac@rgn.hr), 9. Lis. 2017. u 13:32 sati



Verzija za printanje   za tiskati


upomoc
foot_4