crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 956055

Zbornik radova

Autori: Filipović, Marko; Đurović, Petra; Cupec, Robert
Naslov: Experimental Evaluation of Point Cloud Classification using the PointNet Neural Network
( Experimental Evaluation of Point Cloud Classification using the PointNet Neural Network )
Izvornik: Proceedings of the 10th International Joint Conference on Computational Intelligence / Sabourin, Christophe ; Merelo, Juan Julian ; Barranco, Alejandro Linares ; Madani, Kurosh and Warwick, Kevin (ur.). - Seville, Spain : SCITEPRESS – Science and Technology Publications, Lda. , 2018. 47-54 (ISBN: 978-989-758-327-8).
ISSN: 2184-2825
Skup: IJCCI 2018 - 10th International Joint Conference on Computational Intelligence
Mjesto i datum: Sevilla, Španjolska, 18-20.09.2018.
Ključne riječi: Point Cloud, Point Set, Point Cloud Classification, PointNet, RGB-D, Depth Map
( Point Cloud, Point Set, Point Cloud Classification, PointNet, RGB-D, Depth Map )
Sažetak:
Recently, new approaches for deep learning on unorganized point clouds have been proposed. Previous approaches used multiview 2D convolutional neural networks, volumetric representations or spectral convolutional networks on meshes (graphs). On the other hand, deep learning on point sets hasn’t yet reached the “maturity” of deep learning on RGB images. To the best of our knowledge, most of the point cloud classification approaches in the literature were based either only on synthetic models, or on a limited set of views from depth sensors. In this experimental work, we use a recent PointNet deep neural network architecture to reach the same or better level of performance as specialized hand-designed descriptors on a difficult dataset of nonsynthetic depth images of small household objects. We train the model on synthetically generated views of 3D models of objects, and test it on real depth images.
Rad je indeksiran u
bazama podataka:
Scopus
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Cjeloviti rad (više od 1500 riječi)
Vrsta recenzije: Međunarodna recenzija
Projekt / tema: HRZZ-IP-2014-09-3155
Izvorni jezik: eng
Kategorija: Znanstveni
Znanstvena područja:
Računarstvo
Upisao u CROSBI: Petra Đurović (petra.durovic@etfos.hr), 24. Ruj. 2018. u 07:06 sati



Verzija za printanje   za tiskati


upomoc
foot_4