Porewater-derived nutrient fluxes in a coastal aquifer (Shengsi Island, China) and its implication

Xiaogang Chen\(^a\), Jinlong Wang\(^a\), Neven Cukrov\(^b\), Jinzhou Du\(^*\)

\(^a\) State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
\(^b\) Division for Marine and Environmental Research, Ruder Bošković Institute, Zagreb, 10000, Croatia

ARTICLE INFO

Keywords:
Porewater exchange
\(^{222}\)Rn advection-diffusion model
Coastal aquifer
Silicon flux
Harmful algal blooms
Yangtze River Estuary

ABSTRACT

As an important component of the hydrological and biogeochemical cycle, porewater discharge represents a significant pathway for releasing chemical solutes into coastal zones, particularly in highly permeable aquifers. In this study, a \(^{222}\)Rn advection-diffusion model was used to estimate the porewater discharge in a coastal aquifer (Shengsi Island, East China Sea) during November 2015. Porewater discharge was estimated to range from 7.4 to 25.8 (mean: 12.9 ± 5.8) cm d\(^{-1}\). Furthermore, the estimated porewater-derived nutrient fluxes (dissolved inorganic nitrogen (DIN), phosphorus (DIP) and silicon (DSi)) (mol m\(^{-2}\) d\(^{-1}\)) were (1.7 ± 1.4) × 10\(^{-2}\), (2.1 ± 1.1) × 10\(^{-4}\) and (1.5 ± 1.3) × 10\(^{-2}\), respectively. The Si/N ratio of coastal seawater at Shengsi Island was ~0.83, which is close to that of porewater along the coastal aquifers of Shengsi Island (~0.92) but higher than that of the Yangtze River Estuary (~0.68). Thus, porewater-derived Si flux with a higher Si/N ratio may mitigate the outbreak of non-siliceous algae (i.e., Prorocentrum dentatum) in adjacent waters of Shengsi Island. By comparing the SGD-derived nutrient fluxes worldwide, this study suggests that Si flux with a higher Si/N ratio through porewater discharge (or SGD) may strongly influence the Si budget and cycling because such porewater/SGD-derived Si can compensate for the dwindling Si flux from riverine sources due to human activity (i.e., dam construction, reservoirs). Our results are expected to increase our understanding of not only biogenic elements of cycling processes but also eco-environmental processes such as the occurrences of harmful algal blooms alone in river-influenced coasts.

1. Introduction

Submarine groundwater discharge (SGD) is defined as all the fluid flow on continental margins from the seabed to the coastal ocean, with scale lengths of meters to kilometres, regardless of the fluid composition and driving force (Burnett et al., 2003; Moore, 2010), which includes fresh groundwater discharge and recirculated seawater discharge (Taniguchi et al., 2002; Burnett et al., 2003; Santos et al., 2012). While the fresh groundwater discharge is a net source of dissolved species, the recirculated seawater discharge can either remove or add dissolved elements to seawater (Santos et al., 2011). Groundwater is synonymous with porewater in saturated sediments; thus, porewater discharge is generally thought to be one part of SGD (Moore, 2010; O’Reilly et al., 2015). Recent studies have shown the significance of porewater discharge as one of the most important vectors for the transport of nutrients, carbon, greenhouse gases and metals to coastal waters (Charette and Sholkovitz, 2006; Faber et al., 2014; Santos et al., 2015; O’Reilly et al., 2015; Tait et al., 2017). The porewater discharge not only participates in the hydrological cycle but also affects marine systems by exporting nutrients and pollutants to coastal waters. Some studies regarding porewater discharge or SGD have focused on the associated deleterious effects on marine ecological environments, such as macro-algal eutrophication (Hwang et al., 2005a), red tides (Luo and Jiao, 2016), green tide blooms (Liu et al., 2017) and hypoxia formation (McCoy et al., 2011; Dale et al., 2013).

Groundwater is generally enriched in nutrients due to the natural processes or residential and agricultural development in near-shore areas, and even a small net SGD flux may deliver a comparatively large quantity of nutrients to coastal waters (Valiela et al., 1990; Boehm et al., 2006). Recent studies have found that the global mean discharge-weighted dissolved silicon (DSi) concentration of rivers is estimated to be 158 μmol L\(^{-1}\) (Dürr et al., 2011), which is significantly lower than the global value estimated in the 1980s (173 μmol L\(^{-1}\)) (Meybeck and Helmer, 1989). The coastal ecology is likely to continue toward silicon...
limitation and primary production dominated by non-siliceous algae, especially in some estuarine areas (Tréguer and De La Rocha, 2013). However, the effect of the SGD-derived Si flux on the ecological environment in some river-influenced regions under the background of dramatically decreased Si input from rivers (e.g., Yangtze River, Nile River and Danube River) has not received enough attention (Dai et al., 2010; Wahby and Bishara, 1981; Teodoru et al., 2006; Humborg et al., 2000). Meanwhile, several studies have found that SGD appears to be an important source of silicon and has a significant impact on the global ocean silicon budget (Kim et al., 2005; Georg et al., 2009). Therefore, the Si flux conveyed by SGD should be given enough attention under the background of global Si decline from rivers, especially in river-influenced regions.

The Yangtze River had a huge runoff and sediment load, annually $9.2 \times 10^{11} \text{m}^3$ and $4.8 \times 10^8 \text{t}$, respectively, before 2000 (Yang et al., 2006). However, the sediment load has recently exhibited an obvious decreasing tendency in the Yangtze River (from $3.5 \times 10^8 \text{t yr}^{-1}$ in 2000 to $2.0 \times 10^8 \text{t yr}^{-1}$ in 2011) (Yang et al., 2005; Dai and Liu, 2013). In the past 50 years, Dai et al. (2010) reported that there was a sharp decrease in the Si/N ratio and an increase in the N/P ratio, which was likely to cause the increase of red tide blooms and a decrease of dissolved oxygen in the Yangtze River Estuary. Generally, the groundwater contains high concentrations of nutrients, and the proportions of groundwater nutrients are different from the Redfield-Brzezinski proportions (Si:N:P = 15:16:1), which may have a significant effect on coastal ecosystems by influencing the community composition of phytoplankton (Lee et al., 2010; Su et al., 2011). Radon (^{222}Rn, half-life 3.82 days) has been considered to be an excellent porewater discharge tracer since it is often naturally enriched in porewater, behaves conservatively as a noble gas, is relatively easy to measure, and its short half-life can match the oceanographic processes of a time scale of 1–20 days (Burnett and Dulaiova, 2006; Santos et al., 2015). In this study, to slowly collect (approximately 0.5 L min$^{-1}$) a RAD7-H$_2$O 250 mL sample bottle with the over method (Wen et al., 2014; Chen et al., 2018a,b) and immediately analysed by a RAD7 detector (Durridge Co., Inc., USA) according to the manufacturer’s instructions. Nutrient samples ($n = 7$) were filtered by the 0.45 µm cellulose acetate filters that were pre-cleaned with hydrochloric acid and rinsed with Milli-Q water and were filled into polyethylene bottles. Then, the samples were poisoned with saturated HgCl$_2$ and were kept away from the light until the laboratory measurement. The nutrient concentrations (NO_2^-, NO_3^-, NH_4^+, PO_4^{3-} and SiO_4^{4-}) were determined using an auto-analyser (Model: Skalar SANplus146) (Liu et al., 2005, 2009). The DIP and DSI are the concentrations of PO_4^{3-} and SiO_4^{4-}, respectively. The DIN represents the sum of NO_2^-, NO_3^- and NH_4^+. A sediment equilibration experiment was performed to estimate the amount of porewater ^{222}Rn at equilibrium with the solid phase sediments. Each wet sediment sample (approximately 100 g) was sealed in an Erlenmeyer flask with approximately 400–500 mL of seawater for 20–30 days. After this period, the equilibrium activity (C_{eq}) was calculated using the porosity (φ) and wet bulk density (ρ_{wet}) of the sediments (Cable et al., 1996).

2. Materials and methods

2.1. Study area

Shengsi Island is located in the west of the East China Sea (ECS) and is close to the Yangtze River Estuary (Fig. 1a). It belongs to a subtropical maritime monsoon climate, with an annual mean temperature of 16 °C and mean annual rainfall of 1106 mm (http://data.cma.cn). Shengsi is composed by 404 islands, covers a total area of 8824 km2, and the land area is 88 km2 (Chen et al., 2015). Serving as one of the ten largest fishing counties in China, the aquatic resources of Shengsi Island located in the centre of the famous Zhoushan Fishing Ground are very rich. During recent years, the neighbouring waters of Shengsi Island suffer from the frequent occurrence of red tides, such as the outbreaks of non-siliceous algae (Prorocentrum dentatum) rather than siliceous algae (Skeletonema costatum) (Zhang and Yu, 2001; Liu et al., 2016).

2.2. Field sampling and laboratory analysis

The field observations were performed at Shengsi Island during November 2015. The porewater samples from a highly permeable aquifer of the offshore zone were collected by using a push-point piezometer and a peristaltic pump (Charette and Allen, 2006). The porewater profiles were collected at stations P1, P2, P3, P4, P5, P10 and P12 (Fig. 1b). Salinity and temperature were measured in situ using a YSI-EC300A conductivity meter. To prevent bubbles and avoid losses via atmospheric exchange during sampling, ^{222}Rn samples ($n = 50$) were slowly collected (approximately 0.5 L min$^{-1}$) into a RAD7-H$_2$O 250 mL sample bottle with the over method (Wen et al., 2014; Chen et al., 2018a,b) and immediately analysed by a RAD7 detector (Durridge Co., Inc., USA) according to the manufacturer’s instructions. Nutrient samples ($n = 7$) were filtered by the 0.45 µm cellulose acetate filters that were pre-cleaned with hydrochloric acid and rinsed with Milli-Q water and were filled into polyethylene bottles. Then, the samples were poisoned with saturated HgCl$_2$ and were kept away from the light until the laboratory measurement. The nutrient concentrations (NO_2^-, NO_3^-, NH_4^+, PO_4^{3-} and SiO_4^{4-}) were determined using an auto-analyser (Model: Skalar SANplus146) (Liu et al., 2005, 2009). The DIP and DSI are the concentrations of PO_4^{3-} and SiO_4^{4-}, respectively. The DIN represents the sum of NO_2^-, NO_3^- and NH_4^+. A sediment equilibration experiment was performed to estimate the amount of porewater ^{222}Rn at equilibrium with the solid phase sediments. Each wet sediment sample (approximately 100 g) was sealed in an Erlenmeyer flask with approximately 400–500 mL of seawater for 20–30 days. After this period, the equilibrium activity (C_{eq}) was calculated using the porosity (φ) and wet bulk density (ρ_{wet}) of the sediments (Cable et al., 1996).

2.3. Modelling

The groundwater flows transport water, solutes and particles from permeable aquifers to the coastal ocean, and these waters mix prior to discharging and form a porewater-seawater mixing zone (Fig. 2a)
activity of bottom water (Bq m$^{-3}$).

Using the 222Rn activity in the groundwater end-member entering the system (C_{gw}, Bq m$^{-3}$) and porewater discharge rate of 222Rn (ν, cm d$^{-1}$), the advective flux (i.e., porewater discharge flux) (F_{adv}, Bq m$^{-2}$ d$^{-1}$) could be converted by:

$$F_{adv} = \nu C_{gw}$$

In addition, diffusion-exchange across the sediment-water interface would occur when the activity of 222Rn in the porewater is higher than that in the overlying water. The 222Rn diffusive flux across the sediment-water interface is described by Martens et al. (1980):

$$F_{diff} = \lambda D (C_{eq} - C_0)$$

where F_{diff} is the diffusive 222Rn flux of radon from the sediments (Bq m$^{-2}$ d$^{-1}$). The λ, D, C_{eq} and C_0 are explained previously.

3. Results

3.1. Hydrographic and geochemical properties in coastal aquifer

The porewater profiles of 222Rn activity, salinity and temperature are shown in Fig. 3. The porewater temperatures (°C) and salinity in the coastal aquifer of Shengsi Island ranged from 15.9 to 24.3 and 0.1 to 26.9, respectively. The porosity of the sediment changed from 0.27 to 0.42. Since the change of porewater temperature lags relatively behind the air temperature, the temperature of porewater regularly decreases or increases with water depth. Overall, the variation of porewater salinity and temperature are relatively smaller compared to the 222Rn activity.

3.2. 222Rn and nutrients in porewater end-members

At deeper depths (50–120 cm below sea floor) of each porewater profile, 222Rn activities almost did not change with depths because of near equilibrium (Fig. 3). We used the porewater samples at the equilibrium depths as the porewater end-members. The 222Rn, nutrients, salinity and temperature in porewater end-members of Shengsi Island are shown in Table 1. The temperature (°C) in porewater end-members varied from 17.3 to 20.8. The salinity varied over a large magnitude in the porewater end-members, with values from 0.1 to 23.8. The 222Rn activity in the porewater end-members varied from (2.07 ± 0.26) × 103 to (11.1 ± 0.50) × 103 (mean: (5.25 ± 0.34) × 103) Bq m$^{-3}$, which were much higher than those in the coastal seawater (181 ± 69.2 Bq m$^{-3}$). The concentrations of the
DIN, DIP and DSi in porewater end-members varied from 22.4 to 347 (mean: 129 ± 94) μmol L⁻¹, 1.08 to 2.24 (mean: 1.60 ± 0.41) μmol L⁻¹ and 67.4 to 320 (mean: 119 ± 85) μmol L⁻¹, respectively. The mean concentrations of DIN, DIP and DSi in the coastal seawater of Shengsi Island were 59.8 ± 10.9 μmol L⁻¹, 1.52 ± 0.32 μmol L⁻¹ and 49.7 ± 2.1 μmol L⁻¹, respectively, and they were all significantly lower than those in porewater end-members. The mean Si/N ratio of coastal seawater at Shengsi Island was ∼0.83 and this is close to those of porewater end-members (0.92). Moreover, the mean Si/N ratio (∼0.92) in the porewater end-members was close to the Redfield-Brzezinski Si/N ratio (15:16). Higher ²²²Rn activities and DIP and DSi concentrations were observed in the porewater end-members with lower salinity, and the lower level occurred in high salinity (Fig. 4a, c, d), but the DIN had no obvious correction with salinity in the porewater.

![Fig. 3. Porewater profiles of measured ²²²Rn activities (red squares), salinity (blue dots) and temperature (cyan triangles).](image)

Table 1

<table>
<thead>
<tr>
<th>Station</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Temperature</th>
<th>Salinity</th>
<th>²²²Rn activity</th>
<th>DIN</th>
<th>DIP</th>
<th>DSi</th>
<th>Si/N ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>122.4824</td>
<td>30.7014</td>
<td>19.8</td>
<td>15.8</td>
<td>3630 ± 360</td>
<td>347</td>
<td>2.24</td>
<td>130</td>
<td>0.37</td>
</tr>
<tr>
<td>P2</td>
<td>122.4823</td>
<td>30.7015</td>
<td>19.9</td>
<td>21.3</td>
<td>3710 ± 330</td>
<td>116</td>
<td>1.31</td>
<td>77.7</td>
<td>0.67</td>
</tr>
<tr>
<td>P3</td>
<td>122.4821</td>
<td>30.7016</td>
<td>20.8</td>
<td>23.8</td>
<td>2070 ± 260</td>
<td>92.2</td>
<td>1.08</td>
<td>67.4</td>
<td>0.73</td>
</tr>
<tr>
<td>P4</td>
<td>122.4822</td>
<td>30.7015</td>
<td>18.5</td>
<td>22.6</td>
<td>4040 ± 230</td>
<td>95.2</td>
<td>1.26</td>
<td>67.7</td>
<td>0.72</td>
</tr>
<tr>
<td>P5</td>
<td>122.4823</td>
<td>30.7014</td>
<td>17.3</td>
<td>23.5</td>
<td>3250 ± 310</td>
<td>118</td>
<td>1.90</td>
<td>89.2</td>
<td>0.75</td>
</tr>
<tr>
<td>P10</td>
<td>122.4752</td>
<td>30.7135</td>
<td>20.5</td>
<td>12.1</td>
<td>6530 ± 430</td>
<td>22.4</td>
<td>1.38</td>
<td>77.8</td>
<td>3.55</td>
</tr>
<tr>
<td>P11</td>
<td>122.4751</td>
<td>30.7138</td>
<td>20.3</td>
<td>0.1</td>
<td>11100 ± 500</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>P12</td>
<td>122.4779</td>
<td>30.7123</td>
<td>19.6</td>
<td>0.2</td>
<td>7660 ± 490</td>
<td>111</td>
<td>2.03</td>
<td>320</td>
<td>2.88</td>
</tr>
<tr>
<td>Mean</td>
<td>19.6</td>
<td>14.9</td>
<td>11.8</td>
<td>0.2</td>
<td>5250 ± 129</td>
<td>129</td>
<td>1.60</td>
<td>119</td>
<td>0.92</td>
</tr>
</tbody>
</table>

a Not determined.
end-members (Fig. 4b).

4. Discussions

4.1. Porewater discharge traced by 222Rn advection-diffusion model

Based on the 222Rn advection-diffusion model (Eqs. (1) and (4)), the substituted parameters (including C (Bq m$^{-3}$), z (cm), T (°C), z_{eq} (cm), λ (d$^{-1}$), D_s (cm2 d$^{-1}$), φ, C_s (Bq m$^{-3}$) and C_{eq} (Bq m$^{-3}$)) were used to calculate the porewater discharge rate (Table 2). The porewater discharge rates on Shengsi Island were estimated to range from 7.4 to 25.8 cm d$^{-1}$ (mean: 12.9 ± 5.8 cm d$^{-1}$ (Table 2). The maximum value of porewater discharge can be obtained by the product of the porewater discharge rate and the 222Rn activity in the overlying water (C_{eq}) and equilibrated 222Rn activity at depth layer z_{eq} in the sediments (C_{eq})) and porewater discharge (ν).

From Eqs. (2) and (3), the D_s were calculated to be 0.31 ± 0.03--0.32 ± 0.02 cm2 d$^{-1}$ (mean: 0.32 ± 0.01 cm2 d$^{-1}$). The equilibrated 222Rn activity (C_{eq}) was determined by a sediment equilibration experiment (Cable et al., 1996), which ranged between 5000 and 7900 Bq m$^{-3}$ (mean: 6800 ± 1200 Bq m$^{-3}$). The C_{eq} ranged between 227 ± 40 and 538 ± 60 Bq m$^{-3}$ (mean: 443 ± 153 Bq m$^{-3}$). Based on Eq. (6), the 222Rn diffusive fluxes were calculated to range from 11.6 ± 4.2 to 17.5 ± 2.5 Bq m$^{-2}$ d$^{-1}$ (mean: 14.7 ± 3.0 Bq m$^{-2}$ d$^{-1}$) in the sediment-water interface of Shengsi Island. The 222Rn advective fluxes (i.e., porewater discharge fluxes, 680 ± 470 Bq m$^{-2}$ d$^{-1}$) were approximately 46 times the 222Rn diffusive fluxes, which indicated that the advective process is dominant relative to the diffusive process in the permeable aquifer.

4.2. Porewater-derived nutrient fluxes

The nutrients are generally enriched in porewater as a result of the remineralization processes in saline groundwater (Slomp and Van Cappellen, 2004), and the recharge of water containing land-derived nutrients and the other pollutants into aquifers (Nolan et al., 2002). Porewater discharge is a significant pathway from land to coastal systems for nutrient fluxes (e.g., Slomp and Van Cappellen, 2004; Tait et al., 2017), which can lead to a range of effects on coastal ecosystems and significantly impact global nutrient cycling (Slomp and Van Cappellen, 2004). The nutrient fluxes from porewater discharge were determined by using the porewater discharge rate (12.9 ± 5.8 cm d$^{-1}$ in this study) multiplied by the product of mean concentrations of nutrients in porewater end-members. Therefore, the porewater-derived

<table>
<thead>
<tr>
<th>Station</th>
<th>C (Bq m$^{-3}$)</th>
<th>z (cm)</th>
<th>T (°C)</th>
<th>φ</th>
<th>C_{eq} (Bq m$^{-3}$)</th>
<th>z_{eq} (cm)</th>
<th>λ (d$^{-1}$)</th>
<th>C_s (Bq m$^{-3}$)</th>
<th>D_s (cm2 d$^{-1}$)</th>
<th>ν (cm d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1210–3630</td>
<td>7–115</td>
<td>18.7–20.4</td>
<td>0.30–0.34</td>
<td>48</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>12.1 ± 3.8</td>
</tr>
<tr>
<td>P2</td>
<td>1540–3710</td>
<td>10–50</td>
<td>19.0–20.8</td>
<td>0.30–0.34</td>
<td>270</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>7.6 ± 2.9</td>
</tr>
<tr>
<td>P3</td>
<td>1140–2070</td>
<td>7–105</td>
<td>18.9–21.3</td>
<td>0.30–0.34</td>
<td>227</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>25.8 ± 12.2</td>
</tr>
<tr>
<td>P4</td>
<td>1180–4040</td>
<td>7–80</td>
<td>17.9–20.4</td>
<td>0.30–0.34</td>
<td>200</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>7.4 ± 1.7</td>
</tr>
<tr>
<td>P5</td>
<td>1670–5250</td>
<td>7–85</td>
<td>15.9–18.8</td>
<td>0.30–0.34</td>
<td>133</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>10.9 ± 4.8</td>
</tr>
<tr>
<td>P10</td>
<td>892–6530</td>
<td>7–85</td>
<td>19.8–22.6</td>
<td>0.27–0.32</td>
<td>565</td>
<td>1000</td>
<td>0.181</td>
<td>6890</td>
<td>0.32 ± 0.02</td>
<td>15.2 ± 5.9</td>
</tr>
<tr>
<td>P12</td>
<td>1160–7660</td>
<td>10–70</td>
<td>19.6–23.9</td>
<td>0.29–0.31</td>
<td>538</td>
<td>1000</td>
<td>0.181</td>
<td>7910</td>
<td>0.31 ± 0.03</td>
<td>11.1 ± 8.2</td>
</tr>
</tbody>
</table>

Fig. 4. Plots of 222Rn, DIN, DIP and DSi versus salinity in porewater end-members of Shengsi Island.

Table 2

<table>
<thead>
<tr>
<th>Station</th>
<th>C (Bq m$^{-3}$)</th>
<th>z (cm)</th>
<th>T (°C)</th>
<th>φ</th>
<th>C_{eq} (Bq m$^{-3}$)</th>
<th>z_{eq} (cm)</th>
<th>λ (d$^{-1}$)</th>
<th>C_s (Bq m$^{-3}$)</th>
<th>D_s (cm2 d$^{-1}$)</th>
<th>ν (cm d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1210–3630</td>
<td>7–115</td>
<td>18.7–20.4</td>
<td>0.30–0.34</td>
<td>48</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>12.1 ± 3.8</td>
</tr>
<tr>
<td>P2</td>
<td>1540–3710</td>
<td>10–50</td>
<td>19.0–20.8</td>
<td>0.30–0.34</td>
<td>270</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>7.6 ± 2.9</td>
</tr>
<tr>
<td>P3</td>
<td>1140–2070</td>
<td>7–105</td>
<td>18.9–21.3</td>
<td>0.30–0.34</td>
<td>227</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>25.8 ± 12.2</td>
</tr>
<tr>
<td>P4</td>
<td>1180–4040</td>
<td>7–80</td>
<td>17.9–20.4</td>
<td>0.30–0.34</td>
<td>200</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>7.4 ± 1.7</td>
</tr>
<tr>
<td>P5</td>
<td>1670–5250</td>
<td>7–85</td>
<td>15.9–18.8</td>
<td>0.30–0.34</td>
<td>133</td>
<td>1000</td>
<td>0.181</td>
<td>5030</td>
<td>0.32 ± 0.04</td>
<td>10.9 ± 4.8</td>
</tr>
<tr>
<td>P10</td>
<td>892–6530</td>
<td>7–85</td>
<td>19.8–22.6</td>
<td>0.27–0.32</td>
<td>565</td>
<td>1000</td>
<td>0.181</td>
<td>6890</td>
<td>0.32 ± 0.02</td>
<td>15.2 ± 5.9</td>
</tr>
<tr>
<td>P12</td>
<td>1160–7660</td>
<td>10–70</td>
<td>19.6–23.9</td>
<td>0.29–0.31</td>
<td>538</td>
<td>1000</td>
<td>0.181</td>
<td>7910</td>
<td>0.31 ± 0.03</td>
<td>11.1 ± 8.2</td>
</tr>
</tbody>
</table>
nutrient fluxes (mol m$^{-2}$ d$^{-1}$) (DIN, DIP and DSi) in Shengsi Island were estimated to be $(1.7 \pm 1.4) \times 10^{-2}$, $(2.1 \pm 1.1) \times 10^{-4}$ and $(1.5 \pm 1.3) \times 10^{-2}$, respectively. The nutrient fluxes (DIN, DIP and DSi) through the porewater discharge on Shengsi Island were in the range of global level (Table 3). Because there is no river discharge on Shengsi Island, atmospheric deposition serves as one of the sources of nutrients into coastal water. Zhang et al. (2007a,b) estimated the DIN, DIP and DSi fluxes from atmospheric deposition on Shengsi Island to be 1.9×10^{-4}, 3.1×10^{-7} and 5.2×10^{-4} mol m$^{-2}$ d$^{-1}$, respectively. We found that the fluxes of porewater-derived DIN, DIP and DSi into the coastal water on Shengsi Island were 2–4 magnitudes higher than those from atmospheric deposition, which implies that the porewater discharge serves as an important source of nutrients to coastal water at Shengsi Island.

4.3. Effects of the porewater/SGD-derived Si flux on the coastal system

The DSi concentration and flux of the Yangtze River have decreased in the past 50 years, but the DIN and DIP concentrations and fluxes have increased, especially since the 1980s. The Si/N ratio of the Yangtze River Estuary has decreased from 6.23 in the 1960s to 0.68 in 2012 (Fig. 5). However, the N/P ratio of the Yangtze River Estuary had obvious fluctuations, with an increase from 84 during the 1960s to 154 during the 1970s, but with a decrease to 87 during the 2000s (Dai et al., 2010; Liu et al., 2016). The occurrences of red tides in the Yangtze River Estuary rapidly increased from 29 in the 1980s to 195 during 2000–2007 (Fig. 5). The increasing blooms in recent years are mainly non-siliceous algae (Prorocentrum dentatum) rather than siliceous algae (Skeletonema costatum) (Zhang et al., 2007a,b; Zhou et al., 2008; Liu et al., 2016). In present study area, the porewater discharge fluxes associated with its derived-nutrient fluxes (DIN, DIP and DSi) on Shengsi Island were in the range of the global level (Table 3). The mean Si/N ratio of porewater on Shengsi Island was 0.92, which was very close to the requirements for phytoplankton growth ($\text{Si}:\text{N} = 15:16$), but it was much higher than the Si/N ratio (~0.68) of the Yangtze River Estuary (Liu et al., 2016). The results of Wang et al. (2018) showed that mean Si/N ratio from groundwater was 2.18 along the coasts of ECS, which was much higher than the Si/N ratio (~0.68) of the Yangtze River Estuary (Liu et al., 2016). In addition, we found that the Si/N ratio in groundwater and porewater ranged from 0.43 to 19 in many cases, which were mostly higher than the Redfield-Brzezinski proportions (Si:N = 15:16) (Table 3). Therefore, the higher Si/N ratios in porewater (or groundwater) could be expected to affect coastal ecosystems by changing the microalgal community composition in coastal waters. In turn, this may weaken the occurrence of blooms of non-siliceous algae (i.e., Prorocentrum dentatum) in the Yangtze River Estuary. Meanwhile, Wang et al. (2018) estimated that SGD-derived DIN, DIP and DSi fluxes in the East China Sea were approximately 0.7, 2.2 and 1.4 times the Yangtze River input. In addition, regardless of flood season or dry season, Liu et al. (2018) found that SGD-derived nutrient fluxes appeared to be a major source of nutrient input into the Yangtze River Estuary, especially in the dry season. Thus, we imply that the porewater discharge (or SGD) may strongly influence the nutrient budget and cycling on Shengsi Island and in its adjacent waters such as Yangtze River Estuary, especially for Si.

Although our data are limited, the estimated SGD with a higher Si/N ratio and Si flux has significant effects on the coastal ecosystem in many research cases (Dollar and Atkinson, 1992; Kim et al., 2005; Georg et al., 2009). Based on the ^{226}Ra mass balance model, Kim et al. (2005) evaluated the SGD flux to be at least 40% of the river-water input ($\sim 2.3 \times 10^{11}$ m3 yr$^{-1}$) and the flux of Si through SGD to be 20%–100% of that associated with river discharge ($\sim 23 \times 10^9$ mol yr$^{-1}$) in the Yellow Sea, which implies that the Si flux through SGD may be significant on a global scale. Gu et al. (2012) found that the SGD flux was $(0.2–1.0) \times 10^9$ m3 d$^{-1}$ in the Yangtze River Estuary, and this was equivalent to 6%–30% of the Yangtze River water discharge during the...
5. Conclusions

Based on a 222Rn advection-diffusion model, porewater discharge ranged from 7.4 to 25.8 (mean: 12.9 ± 5.8) cm d$^{-1}$ in a coastal aquifer of Shengsi Island. Its associated nutrient fluxes (DIN, DIP and DSi) were estimated to be $(1.7 ± 1.4) \times 10^{-2}$, $(2.1 ± 1.1) \times 10^{-3}$ and $(1.5 ± 1.3) \times 10^{-2}$ mol m$^{-2}$ d$^{-1}$, meanwhile, we found that the Si/N ratio of porewater (−0.92) in this study was higher than the Si/N ratio (−0.68) of river water in the Yangtze River Estuary, which may mitigate the occurrence of blooms of non-siliceous algae in the sea area near Shengsi Island. Our result may provide valuable information for effective management strategies of these vulnerable water resources in the Zoushan Fishing Ground (one of the ten largest fishing counties in China). In addition, considering that the decline in the Si flux from riverine input is due to human activity (i.e., dam construction, reservoirs), the Si flux with a higher Si/N ratio through porewater discharge like Shenshi Island may influence the global Si budget and cycling.

Acknowledgements

We would like to thank all the colleagues of the radioisotope group from SKLEC/ECNU for their assistance in the field. We acknowledge the Editor Mike Elliott and three anonymous reviewers for their constructive comments that significantly improved the original manuscript. This research was supported by the Natural Science Foundation of China (Grant No. 41576083 and 41376089).

References

Cociasu, A., Dorogan, L., Humborg, C., Popa, L., 1996. Long-term ecological changes in...

