Abstract. The Zachman Framework for information systems architecture is a scheme for classifying and organizing the design artefacts created in the process of designing and producing information systems. It classifies artefacts on two views or dimensions: perspectives or roles and characteristics or abstractions. Although motivation abstractions are often neglected, the motivation should be the most influential driver in designing information system. We suggest business rules approach, which breaks away business rules from information system’s data and processes and places business rules in the centre of users’ interests. The responsibility for defining and maintaining business rules must be taken over by business people.

Keywords. information systems, Zachman framework, information systems architecture, motivation abstraction, business rules

1. INTRODUCTION
The key to overcome the complexity and change of a complex product, such as an enterprise or an information system, is architecture. If the product is so complex that its author cannot remember all details, he/she has to write down its architecture. The information system, as a complex product, is described in Section 2. The Zachman Framework for information systems architecture, a scheme for organizing design artefacts into architecture, is described in Section 3 and its abstractions in Section 4. In Section 5 the motivation issues of the Framework architecture are described. Business rules as the main part of the motivation abstractions are described in Section 6.

2. INFORMATION SYSTEM
The usual definition says that the information system is a system, whether automated or manual, that comprises the entire infrastructure, organization, people, machines, and/or methods organized to collect, process, transmit, and disseminate data that represent user information. This descriptive definition of information system does not consider its fundamental purpose and genesis [1]. We consider that it is not adequate for information system developers. Therefore, we suggest using the genetic definition of information system: An information system is a subsystem of the organizational system, whose task is to link processes on the operational, management and decision-making level. Its goal is improving performance efficiency, supporting good quality management and increasing decision-making reliability [1]. The class of systems, such as an enterprise, are called organizational systems. They are goal-oriented, dynamic, multi-level hierarchical, with information-feedback and control, active in unstable environment, learning intensive, self-organizing. Each organizational system involves people, business processes (business technology) and technical resources to operate in unstable environment in order to achieve specific goals. Effective organizational system management has to be supported by a well-designed information subsystem. The structure of the organizational system, its goals and tasks, and the way of achieving them determine the information (sub)system of the organizational system. Therefore, the information system is a complex system that has to cover all informational tasks needed to service operational, management and decision-making activities of the enterprise. Moreover, the information system is an information-based model of the enterprise, which describes the enterprise’s business through data. These facts are important because our intention is to discuss motivation issues in the information systems development.
3. ZACHMAN FRAMEWORK FOR INFORMATION SYSTEMS ARCHITECTURE

The key issue in the information system development is its architecture. The Zachman framework for information systems architecture [3, 8, 9] may help in development and/or documenting an enterprise-wide information systems architecture. The purpose of the framework is to provide a basic structure that supports the organization, access, integration, interpretation, development, management, changing of a set of architectural representations, called artefacts of the enterprise’s information system. The Framework enables focused concentration on selected aspects of the information system without losing sense of the contextual or holistic perspective.

The Zachman Framework is a generic classification scheme for design artefacts of any complex product, such as building, airplane, information system or enterprise. A complex object considered in the Framework functions as a stand-alone and self-contained unit. There is no difference whether the product is physical (building) or conceptual (enterprise or information system). Although often looked at as a framework for information systems, the Zachman Framework is successfully extended to the Framework for Enterprise Architecture [10].

Zachman derived the Framework from analogous structures in the traditional engineering disciplines such as architecture, which classify and organize the design artefacts created in the process of designing and producing complex products (e.g. buildings). The engineering disciplines have accumulated considerable knowledge of their product development and management. This knowledge has enabled great increases in product sophistication and product change management over time.

The first view on design artefacts is through product characteristics or product abstractions, which include the what, how, where, who, when and why characteristics. They are explained as what it is made of (structure), how it works (processes), where the components are (flow, locations), who does what work (people, operations), when things happen (dynamics, time) and why various choices are made (motivation). In the other words some things (structure) transformed by some processes (transform) in some locations (flow) by some people (operations) at some time (dynamics) for some reasons (motivation). Fig. 1 shows some artefacts for product characteristics in house construction and in information systems development.

<table>
<thead>
<tr>
<th>Product characteristics</th>
<th>Description</th>
<th>Question</th>
<th>Artefacts in house construction</th>
<th>Artefacts in information systems development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure (Things)</td>
<td>Material description</td>
<td>What</td>
<td>House, room</td>
<td>Data entity</td>
</tr>
<tr>
<td>Transform (Processes)</td>
<td>Functional description</td>
<td>How</td>
<td>Eat, play, sleep</td>
<td>Computer program, manual procedure</td>
</tr>
<tr>
<td>Flow (Locations)</td>
<td>Spatial description</td>
<td>Where</td>
<td>Placement of rooms</td>
<td>Network of locations</td>
</tr>
<tr>
<td>Operations (People)</td>
<td>Operational description</td>
<td>Who</td>
<td>Occupants, guests, pets</td>
<td>User, organization</td>
</tr>
<tr>
<td>Dynamics (Events, Time)</td>
<td>Timing description</td>
<td>When</td>
<td>When to eat, play, sleep</td>
<td>Event</td>
</tr>
<tr>
<td>Motivation (Strategies)</td>
<td>Motivation description</td>
<td>Why</td>
<td>Accommodate growing family</td>
<td>Business goal, business rule</td>
</tr>
</tbody>
</table>

Figure 1. Product characteristics of the Framework
The other view on design artefacts is through *perspectives or roles* in the product development process. Perspectives or roles include the *contextual* perspective (*planner* role), the *conceptual* perspective (*owner* role), the *logical* perspective (*designer* role), the *physical* perspective (*builder* role), and the *component* perspective (*sub-contractor* role). Fig. 2 shows these perspectives; and models produced in each perspective in business and development terms.

<table>
<thead>
<tr>
<th>Perspective (role)</th>
<th>Enterprise model (development model)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contextual (planner)</td>
<td>Scope (contextual model)</td>
<td>Definition of the product’s direction and purpose</td>
</tr>
<tr>
<td>Conceptual (owner)</td>
<td>Business model (conceptual model)</td>
<td>Definition (in business terms) of the product</td>
</tr>
<tr>
<td>Logical (designer)</td>
<td>System model (logical model)</td>
<td>Definition (in designer’s term) of the product</td>
</tr>
<tr>
<td>Physical (builder)</td>
<td>Technology model (physical model)</td>
<td>Definition (in technology term) of the product</td>
</tr>
<tr>
<td>Component (sub-contractor)</td>
<td>Component model (physical component model)</td>
<td>Specification of the product’s components</td>
</tr>
</tbody>
</table>

Figure 2. Perspectives (roles) of the Framework

The Framework for information systems architecture, graphically depicted in Fig. 3, shows the artefacts that constitute the intersection between the perspectives or roles in the design process, shown in rows, and the product characteristics or abstractions, shown in columns. In the case of some complex product, such as an enterprise, some cells of the Framework matrix are more hypothetical and more empirical than the others. However, all cells exist at least hypothetically.

The Framework is easy to understand. It is comprehensive while it addresses the product (e.g. enterprise or information system) in its entirety. It helps to consider complex concepts in non-technical words. It enables to work with abstractions to isolate simple elements without losing sense of the complexity of a product as a whole. Finally, it is independent of methods and tools. It is intended to be a thinking or analytical tool in dealing with complexities and dynamics of a complex object.

4. **ABSTRACTIONS IN THE FRAMEWORK OF IS ARCHITECTURE**

Upon completion of the information system architecture the Framework cells has to be populated with appropriate artefacts within the scope of the new system. The good architecture consists of a complete set of explicitly stated models, vertically and horizontally integrated, at a very high level of detail.

Each row in Fig. 3 represents the view on IS from specific *perspective* that belongs to a unique *role*. The role of a *planner* in the contextual perspective is to set the scope (contextual model) or the strategy of an information system. The role of a *business owner*, business people or a system analyst in the conceptual perspective is to define the business in a formal way (enterprise model, business model, conceptual model). The role of a *designer* in the logical perspective is to design the IS model (logical model). The role of a *builder* in the physical perspective is to design the technology model (physical model). A *sub-contractor* is responsible for components of the system (component model). Finally, the information system is built in concordance with all the mentioned models.

The columns in the Framework represent the different information system’s characteristics or abstractions. Each row in the *data* column addresses understanding of and dealing with enterprise’s data (what are things of interest). The rows in the *process* column describe the various aspects of
operations of the information system (how are things processed). The network column is concerned with locations (where the operations are done). The people column describes who is involved in the information system. The time column describes the effects of time on the information system. The artefacts of this column are difficult to address in isolation from others, especially from function artefacts. Usually, it describes when the function is executed. The motivation column is concerned with the conversion of business goals and strategies into specific business rules.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope (contextual) Planner</td>
<td>Class of business things</td>
<td>Class of business processes</td>
<td>Major business locations</td>
<td>Major organization units</td>
<td>Major business events</td>
<td>Major business goals</td>
</tr>
<tr>
<td>Enterprise model (conceptual) Owner/analyst</td>
<td>Semantic data model, conceptual data model</td>
<td>Business process model</td>
<td>Business logistics system</td>
<td>Workflow model</td>
<td>Master schedule</td>
<td>Business plan</td>
</tr>
<tr>
<td>System model (logical) Designer</td>
<td>Logical data model</td>
<td>Application architecture</td>
<td>Distributed systems architecture</td>
<td>Human interface architecture</td>
<td>Processing structure</td>
<td>Business rules</td>
</tr>
<tr>
<td>Technology model (physical) Builder</td>
<td>Physical data model</td>
<td>Systems design</td>
<td>Technology architecture</td>
<td>Presentation architecture</td>
<td>Control structure</td>
<td>Rule design</td>
</tr>
<tr>
<td>Component model (component) Sub-contractor</td>
<td>Data definition</td>
<td>Programs</td>
<td>Network architecture</td>
<td>Security architecture</td>
<td>Timing definition</td>
<td>Rule specification</td>
</tr>
<tr>
<td>Functioning Enterprise (functioning) User</td>
<td>Data</td>
<td>Function</td>
<td>Network</td>
<td>Organization</td>
<td>Schedule</td>
<td>Strategy</td>
</tr>
</tbody>
</table>

Figure 3. The Framework for information systems architecture

5. MOTIVATION COLUMN OF THE FRAMEWORK

Effective organizational system management has to be supported by a well-designed information subsystem. The structure of the organizational system, its goals and tasks, and the way of achieving them determines the information system of the organizational system.

As the genetic definition of information system stated, the information system’s goal is to improve business process efficiency, support good quality management and increase decision-making reliability. Some consequences of the definition [1] are:

- An information system cannot exist by itself. It is always a subsystem of some real organizational system, i.e. each organizational system has its unique and distinctive information system.
- An information system is always a model of business processes of some organizational system.
- A considerable knowledge of the organizational system’s functions and structure are necessary in designing its information system.

In the paper we attempt to stress the importance of the motivation column of the Framework, which has to be the most influential driver in the development new or improving existing information system.
system. As seen in Fig. 3, the motivation abstractions are about business itself. They are represented by a list of business goals and strategies in the contextual perspective, translated into a business plan in the conceptual perspective, described by business rules in the logical perspective, specified by rule design in the physical perspective and rule specification in the component perspective; and finally enforced in the functioning enterprise accompanied by its information system. The motivation abstractions represent the strategy of the enterprise, which has to be supported by the information system.

Unfortunately, the motivation issues are inadequately considered in the information systems theory and practice. We are witnesses of the lack of appropriate theoretical paradigms, methods and techniques dealing with the motivation abstractions although the motivation is the most influent information system driver. Therefore, we have to stress the importance of the motivation abstractions to both information systems developers and information systems students.

The genetic definition of the information system says that an information system has to fulfil all informational tasks according to business processes efficiency, good quality management and decision-making reliability. The recommended way to achieve these goals is to specify the information system’s requirements beginning with business goals, strategies and plans; and the way of doing the job is to define enterprise’s business rules model.

6. BUSINESS RULES

Business rules are used to capture and implement precise business logic in business processes. They describe knowledge about business. By the Business Rules Group [7] a business rule “defines or constrains some aspect of the business. It is intended to assert the business structure, or to control or influence the behaviour of the business”.

From the business perspective the business rule is a directive intended to influence or guide business behaviour, in support of business policy that has been formulated in response to an opportunity, threat, strength, or weakness of the business [7]. Business rules represent core business concepts and policies. They represent the basic business vocabulary and rules that control or guide business behaviour. They indicate what is possible or desirable in running the business.

From the information system perspective the business rule is a statement that defines or constrains some aspect of the business. It is intended to assert business structure, or to control or influence the behaviour of the business. A business rule pertains to the facts of the business system that are recorded as data and to the constraints on changes to the values of those facts.

A “rule model” is settled in the motivation column of the Framework. The rule model is a kind of enterprise metadata, while all others column belong to “information system” columns. The Business Rules Manifesto of Business Rules Group [2] prescribes rule independence, i.e. the business rules should be expressed independently of any other model type. Historically, business rules have been found in the artefacts of others columns such data, process or event columns. However, there is a tendency to treat business rules as a separate artefact, but still related to other characteristics of a given perspective.

Business rules must describe the way business itself is run, not just the information system. It is intended that the business users are the owners of business rules. Since rule statements ought to be in a plain language understandable by business users (preferably a kind of natural language), it is easier for users to accept ownership of a “rule model” than accept any other model. In fact, business people have to be responsible for defining and maintaining business rules. Business rules must be understandable to business people more than any other abstraction of the developing information system.
Enterprises that take a model-based, architected approach to software component development can use business rules to refine the models and create better designs. An enterprise that properly documents its business rules can also manage change better than one that ignores its rules [5]. Business rules can be defined, modelled and implemented as metadata for an enterprise’s information system. Implementing business rules as metadata is the most rigorous and, at the same time, most flexible approach to business rule implementation. This is in contrast to other traditional process-driven or procedure-driven implementation approaches.

Business rules defined and managed separately allow design and generate applications from the business rules alone. This is essential for enabling business and information system architecture to be truly adaptive. Business rules offer several benefits, such as technical independence, better quality requirements, ease of change. Generally, rules are more important to the business than technical equipment.

Business rules must be explicitly expressed, either graphically or as a formal language, declarative in nature and with coherent representation model. Some characteristics of business rules are [2]:

- Rules are basic to what the business knows about itself, i.e. to the basic business knowledge. They are motivated by identifiable and important business factors, business goals and objectives, although they are shaped by various influences.
- Rules are explicit constraints on business behaviour. They define the boundary between acceptable and unacceptable business activity.
- Rules can exist independently of procedures and workflows. They generally apply across processes and procedures, but they are neither processes nor procedures. They should be defined independently of “who”, “where”, “when” or “how” responsibility.
- Rules should be specified by the business people who have relevant business knowledge.
- Rules should be explicit.
- Rules should be expressed declaratively and for the business audience, in natural language sentences. If something cannot be expressed, then it is not a rule.
- Rules must be managed. A business rule system is never really finished because it is intentionally built for constant change. Rules, and the ability to change them effectively, are important to improve business adaptability.

Business rules can be categorized in different ways, the most known is of Ross [6]. However, there is no standard for expressing atomic business rules. An example of business rules from [7] shows possible building blocks in the business rules approach: terms, facts and rules. Terms express business concepts, facts make assertions about these concepts; and rules constrain and support these facts.

Example: Terms: customer, order, account.
Facts: (1) A customer places an order. (2) A customer holds an account.
Rule: A customer may place an order only if the customer holds an account.

As the example shows, a rule is fulfilled or not. It refers to underlying terms and facts. A fact model is essentially a structured business vocabulary.

Although business rules may be expressed in a plain natural language, it is best to use a kind of templates for business rules. Here are some of the proposed templates for few types of business rules [4] and examples of the usage.

<Term> Is Defined As <textual definition>
<Term1> Is Referenced In the <Term2>
<Term> Is Computed As <formula>
IF <rule phrase> [AND <rule phrase> AND <rule phrase>…] THEN <action>
<Price Year> is defined as fiscal year. For example, price year goes from January, 1 to December, 31.

<Contract Price> is referenced in the <Agreement>

<Gross Sales> is computed as Sum (<Contract Price> x <Net Sales Quantity>)

If Fiscal Year End AND Portfolio Owner THEN Send Annual Report

Rules need to be managed in an automated repository, allowing business users and analysts to directly access and manipulate rules.

7. CONCLUSION

The Zachman Framework for information system architecture is a set of design artefacts relevant for describing an information system. Present information systems methodologies do not equally populate and understand all Framework cells. A great deal is known about data and process columns and few cells in other columns, while many cells are less understood. From the business viewpoint, the most important is the motivation column describing business goals, objectives and strategies, finally specified by business rules.

Business rules describe knowledge about business. Business rules approach separates business rules away from information system’s data and processes, and places rules in the centre of the users’ interests. Therefore, business people have to take the responsibility for defining and maintaining business rules.

8. REFERENCES

