The secondary cell wall polymer of *Geobacillus tepidamans* GS5-97T: structure of different glycoforms

Christian Steindl, a Christina Schäffer, b Vilko Smrečki, c Paul Messner b and Norbert Müller a,*

a Institut für Organische Chemie, Johannes-Kepler-Universität Linz, Altenbergerstr. 69, A-4040 Linz, Austria
b Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, Gregor-Mendel-Str. 33, A-1180 Wien, Austria
c NMR Center, Rudjer Bosković Institute, Bijenička 54, 10000 Zagreb, Croatia

Received 23 May 2005; received in revised form 28 June 2005; accepted 12 July 2005
Available online 10 August 2005

Abstract—Nuclear magnetic resonance spectroscopic studies of the strain-specific secondary cell wall polymer (SCWP) of the Gram-positive, moderately thermophilic organism *Geobacillus tepidamans* GS5-97T reveal two glycoforms consisting of identical tetrasaccharide repeating units with different chemical modifications of the amide moieties. On the basis of sugar analyses along with 1D and 2D 1H, 13C, 15N, and 31P NMR spectroscopy at natural isotope abundance, the basic backbone structure of the SCWP was established to be β-DD-Man$_p$-2,3-diNAcANH$_2$-(1→6)α-DD-Glc$_p$-(1→4)β-DD-Man$_p$-2,3-diNAcANH$_2$-(1→3)α-DD-Glc$_p$NAc-(1→)γ-(1→O)γ-PO$_2$-(Oγ-6)-MurNAc, with modifications of the amide groups. In one glycoform, all β-DD-Man$_p$-2,3-diNAcANH$_2$ residues are substituted with two acetyl groups (glycoform I) at the amide group at C-6; in the other glycoform (glycoform II), only one proton of this amide group is substituted by an acetyl group. The ratio between both the glycoforms approximates 1:1.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: *Geobacillus tepidamans* GS5-97T; Secondary cell wall polymer (SCWP); Bacterial polysaccharide structure; Glycoforms; Chemical modification

1. Introduction

Geobacillus tepidamans strain GS5-97T is the type strain of a recently described novel species among moderately thermophilic bacilli. Together with other strains, it was isolated from extraction-juice samples of an Austrian beet sugar factory. *G. tepidamans* GS5-97T is capable of synthesizing glycosylated surface layer (S-layer) proteins constituting the outermost cell envelope layer of the bacterium. The S-layer glycoprotein glycan chains of *G. tepidamans* GS5-97T are assembled from $\{3\}$-α-L-rhamnopyranose-(1→2)α-d-fucopyranose-(1→)β-L-disaccharide repeating units. The glycoprotein is proposed to be attached to the peptidoglycan layer (PG) by saccharide chains, designated as secondary cell wall polymer (SCWP). Such saccharide structures are well known from many other Gram-positive bacteria. The term ‘secondary wall polymers’ has been introduced by the first generation of researchers in the field of Gram-positive cell walls, which has also been reviewed most recently. The comparison of structurally investigated SCWPs from Gram-positive S-layer-covered organisms revealed that they are, with one exception known so far, built of distinct repeating units, with variations within a given species arising exclusively from differences in glycan chain lengths, thereby possibly reflecting a repeating unit-wise SCWP biosynthesis mechanism. Here, we report for the first time on different glycoforms of a naturally occurring SCWP. The SCWP of *G. tepidamans* GS5-97T possesses the same repeating unit backbone structure as the SCWP of *Geobacillus stearothermophilus* NRS 2004/3a, with...
modifications of the carboxyl groups of the mannose-aminuronic acid residues.

2. Results and discussion

2.1. Isolation and chemical characterization of the SCWP glycoforms

From about 600 mg of PG preparation of *G. tepidamans* GS5-97T, two major SCWP fractions, designated glycoform I and II, were isolated. While the two glycoforms co-eluted in the void volume of a Sephadex G-50 column, where the majority of SCWP-free PG break-down products were removed, their separation based on differences in the molecular masses was subsequently accomplished by a combination of Bio-Gel P-30 and P-60 chromatography. Twenty eight milligrams of the high-molecular mass glycoform I obtained after Bio-Gel P-60 chromatography finally yielded 6.3 mg of material after RP(C18)-HPLC. This material was subjected to NMR analysis. From the more acidic glycoform II (lower molecular mass), 5.5 mg of a pure sample was obtained after re-chromatography on the Bio-Gel P-30 column. The summarized yields of glycoforms I and II indicated that the SCWP constitutes approximately 2% of *G. tepidamans* GS5-97T PG. Carbohydrate analysis by HPAED-PED showed identical carbohydrate composition of the glycoforms, with Glc and GlcNAc being present in an equimolar ratio. The content of the PG amino acids glutamic acid, alanine, histidine, diaminopimelic acid, and muramic acid varied slightly. Their molar ratios were 1.1:0.8:1.2:1.0:2.0 in glycoform I, and 1.0:0.9:1.1:1.0:1.0 in glycoform II, respectively, with diaminopimelic acid being set to the value of 1.0.

2.2. NMR spectroscopic studies and structure of the SCWP glycan forms

For the interpretation of NMR data, capital bold letters denote individual monosaccharide residues, following their sequence in the proposed oligosaccharide structures (Fig. 1). In the anemic region of the 13C/1H-HSQC spectra of both samples, four strong (A–D) and three medium-intensity cross-peaks (A', B', D') could be distinguished. The integral ratios of these peaks were 1:1:6:5:5:5:1 ($A_0:A_0:C:D:A:B:D_0$), which was in accordance with the integrals of the corresponding regions in the 1D 1H spectra. This pattern was explained by an oligosaccharide sequence consisting of a basic tetrasaccharide building block, repeated six times. Only the first two monosaccharide residues at the reducing end and a single residue at the non-reducing end gave non-degenerate NMR signals. All spectroscopic and chemical evidence is consistent with this interpretation, as will be described below.

One-bond C–H coupling constants revealed the configuration at the anomeric C-1 atoms to be α for units A, A', and C ($^1J_{C,H}/C_2$ = 172 Hz) and β for B, B', D, and D' ($^1J_{C,H}/C_2$ = 162 Hz). Starting from these anomeric positions, an almost complete assignment of all backbone protons and carbons was obtained (see Table 1) by combining intra-glycose information from 2QF-COSY- and 13C/1H-HSQC-TOCSY spectra with inter-glycose connectivities obtained mostly from HMBC spectra. Figure 2 illustrates the types of correlations leading to these

![Figure 1](image-url)
assignments for the two units A and C and the B–A(1→3) and D–C(1→6) glycosidic linkages. Several HMBC spectra optimized for different 13C–1H coupling constants (from 3 to 10 Hz) were required to obtain all inter-glycose correlations. Units A′ and A were identified as α-GlcNAc residues, showing typical chemical shifts for 1H and 13C and 3J$_{2,3}$ coupling constants of about 10 Hz. A typical deshielding of 1H (~0.2 ppm) and 13C (~0.1 ppm) and the larger (~0.1 ppm) separation of the diastereotropic H-6 protons compared to unit A (see Fig. 3). The positions of the glycosidic linkages were validated by further 1H/13C-HMBC and 1H/1H-NOESY experiments.

Assignment of the remaining peaks corresponding to units B, B', D, and D' was straightforward (Table 1). The acetate groups at C-6 of mannosaminouronamides (B, B', D, and D') were not assignable (see text).

<table>
<thead>
<tr>
<th>Glycoform residue</th>
<th>C/H-atom</th>
<th>2-N-Acetyl</th>
<th>3-N-Acetyl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>CH$_3$</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>95.65</td>
<td>52.82</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.49</td>
<td>4.09</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.12</td>
<td>4.39</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>100.92</td>
<td>52.95</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.16</td>
<td>3.99</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.04</td>
<td>4.38</td>
</tr>
<tr>
<td>Glycoform II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-GlcNAc (A′)</td>
<td>1</td>
<td>90.42</td>
<td>70.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.13</td>
<td>3.43</td>
</tr>
<tr>
<td>α-GlcNAc (A)</td>
<td>1</td>
<td>101.33</td>
<td>52.36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.97</td>
<td>4.57</td>
</tr>
<tr>
<td>β-Manp-2,3-diNACANHAc (B′)</td>
<td>1</td>
<td>101.40</td>
<td>52.22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.29</td>
<td>3.89</td>
</tr>
<tr>
<td>β-Manp-2,3-diNACANHAc (D′)</td>
<td>1</td>
<td>101.96</td>
<td>57.51</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.59</td>
<td>3.79</td>
</tr>
</tbody>
</table>

Bold capital letters refer to Figure 1. The acetate groups at C-6 of mannosaminouronamides (B, B', D, and D') were not assignable (see text).
position of these residues is corroborated by the deshielding of H-4 ($\delta_{H-4} = 3.94$–4.05 ppm). There is no comparable deshielding effect at C-4 of unit D ($\delta_{H-4} = 3.77$ ppm in glycoform I, 3.68 ppm in glycoform II), because this sugar is at the non-reducing end of the SCWP.

In HSQC spectra (Fig. 3), no signals for CH$_2$-6 were found for the manno-configured sugars. No unassigned C–H one-bond correlation peaks with amplitudes corresponding to one or more sugars of the 24 residues constituting the SCWP remained in the spectrum. From this and from the observed deshielding of C-5 (at ~ 80 ppm) and H-5 (at ~ 4 ppm), we conclude that these sugars are oxidized at position 6, indicating the presence of mannuronic acid derivatives.

To this point, the saccharide structure of the SCWP of GS5-97T is reminiscent of that of G. stearothermophilus NRS 2004/3a. However, in 13C NMR and HMBC (at several coherence transfer times) spectra, no signals corresponding to carboxylate carbons were found. All carbonyl signals appeared within a narrow range of 175–177 ppm characteristic of amides and imides. This finding led to the conclusion that these uronic acid groups are amidated. Integration of the 1D-1H spectra revealed significant differences in the acetyl proton regions (1.85–2.15 ppm) of the two glycoforms. In glycoform I, ~ 169 acetyl protons were found, compared to ~ 132 acetyl protons in glycoform II (Fig. 4). This difference of ~ 37 protons closely corresponds to two acetyl groups for each of the six tetrasaccharide repeating units. Taking into account a small number of overlapping amino acid signals in the same spectral region (as is evident from the small cross-peaks in Fig. 3) this corresponds to a total of 54 and 42 acetyl groups for glycoforms I and II, respectively.

Attempts to use 15N-1H correlation spectra to follow the connectivity of the acetyl groups to the sugar rings were only partially successful. Assignment of the 15N signals (Table 1) of most 2-NAc and 3-NAc 15N chemical shifts was achieved by 15N-CH$_3$ correlation in HMBC spectra, relating 15N chemical shifts to the CH$_3$-proton resonances, which had been assigned from the NOESY spectra. The additional N-acetyl methyl protons, clearly visible in the 1H NMR spectra (Fig. 4), did not result in resolved cross-peaks in 1H/15N HMBC spectra of both glycoforms. Presumably, this is due to local conformational dynamics around the amide bonds.

15N/1H-HSQC spectra of the two glycoforms revealed no significant differences in the integral ratios for the 2- and 3-NH-cross-peaks of N-acetylglucosamines and N-acetylmannuronamides. The only possibility to explain these observations was the occurrence of different degrees of acetylation of the amide-N at C-6. The spectroscopic data together with the chemical
All resonances from N-acetylated positions in aminosugars are present in the region b (expanded in (b)). The other non-anomeric positions (with the exception of CH$_2$-6 in GlcC) observed in 13C/1H-HMBC spectra and confirmed by NOE cross-peaks. The most important cross-peaks are due to the tamido-2,3-dideoxy-2,3-diacetamido-2,3-dideoxy-β-D-mannuronamide. This finding is corroborated by the higher acidity of the mono-acetylated glycoform II due to fast exchanging imide protons (the pH of an aqueous solution of glycoform I was 4.6; while that of glycoform II was pH 2.8). The impossibility to detect any correlation between H-5 of α-D-GlcNAc (glycoform I) and H-2 of β-D-GlcNAc (glycoform II) was proven by NOE cross-peaks between H-1 and H-2 of α-D-GlcNAc. All other glycosidic linkages (B-H$_1$→A-C-3, C-H$_1$→B’-C-4, C-H$_1$→B-C-4, D-H$_1$→C-C-6, D’-H$_1$→C-C-6, and A-H$_1$→D-C-4) were observed in 13C/1H-HMBC spectra and confirmed by NOE cross-peaks. The most important cross-peaks for structure elucidation were B’-H$_1$→A’-H-2, B-H$_1$→A-H-3, C-H$_1$→B’-H-4/B-H-4, A-H$_1$→D-H-4, D-H$_1$→C-H-6, and D’-H$_1$→C-H-6.

The linkage of the reducing end α-D-GlcNAc (A’) to muramic acid of the PG moiety via a phosphodiester bond was derived from indirect evidence. For muramic acid, only the major signals are listed in Table 1, since heterogeneity of the PG moiety, arising from varying degrees of degradation during sample preparation leads to considerable signal splitting and assignment ambiguity. The 31P NMR spectrum showed one broad resonance at 0.64 ppm (~45 Hz line width), which is characteristic of a phosphodiester bond. ^{1}H/31P decoupling difference correlation spectra as used earlier did not allow unequivocal discrimination between subtraction artifacts and true signals (due to the inherently lower sensitivity of the non-cryogenic NMR probe used for 31P experiments). However, from the observed ^{1}H and ^{13}C chemical shifts, a 1→6 linkage between muramic acid and a phosphate group is most likely. No evidence for a pyrophosphate was found. Approximately, equal amounts of terminal α- and β-configured muramic acid residues were present in the PG. This part of the structure was not further analyzed.

In conclusion, two glycoforms of a SCWP were isolated from a PG preparation of *G. tepidans* GS5-97. The glycan moieties of both the glycoforms are...
linked at the reducing end to muramic acid residues of the PG sacculus of the bacterial cell wall via a phospho-diester bond. The 24 sugar residues of the SCWP constitute six linear tetrasaccharide repeating units, which contain alternating \(\alpha \)-gluco- and \(\beta \)-manno-configured sugars. The \(\beta \)-manno-configured sugars are uniformly substituted over the entire SCWP, but characteristically different in the two glycoforms. To our knowledge this is the first report on such SCWP modifications; glycoform I contains 6-\(N \),N-diacetyl-2,3-diacetamido-2,3-dideoxy-\(\beta \)-d-mannuronamide, and glycoform II contains 6-\(N \)-acetyl-2,3-diacetamido-2,3-dideoxy-\(\beta \)-d-mannuronamide residues.

3. Experimental

3.1. Bacterial cultivation and general methods

Fed-batch cultivation of \(G. \) tepidamans GS5-97\(^T \) was carried out in a Braun Biostat C 15-l fermenter (B. Braun, Melsungen, Germany) at 55°C at a constant pH value of 7.0, with a dilution rate of 0.3 h\(^{-1} \) and an oxygen saturation of 30\%.\(^1 \) Cells were separated from the culture broth by centrifugation at 16,000g at 4 °C, and the cell pellet was stored at −20 °C.

Analytical methods for carbohydrate analysis, amino acid analysis, and determination of phosphate were described previously.\(^{18-20} \)

3.2. Isolation of SCWP

For isolation of SCWP, 125 g of frozen cells were thawed in distilled water, re-suspended to homogeneity and broken by mild sonication in an ice bath (Branson sonicator; output 70\%, 3 cycles, 5 min each). Cell pellets were collected by centrifugation at 48,000g (4 °C) and washed with 1 M NaCl. Degradation of protein, re-N-acetylation, and lysozyme digestion were performed according to the published procedures.\(^{16} \) The soluble fraction from the lysozyme digest was applied to subsequent columns of Sephadex G-50 (Amersham Pharmacia Biotech) and Bio-Gel P-30 (Bio-Rad) as described previously.\(^9 \) The high molecular-mass pool after P-30 chromatography was further fractionated on Bio-Gel P-60 (Bio-Rad) and the carbohydrate-containing pool was finally purified by C-18 reversed-phase HPLC (Nucleosil 120-3C18; Machery & Nagel) in a water/\(\text{CH}_3\text{CN} \) gradient, yielding glycoform I. The carbohydrate-containing material eluting within the fractionation range of the P-30 column was re-chromatographed on the same column and yielded glycoform II. The two glycoforms

Figure 4. Partial proton NMR spectra of glycoform I (a) and glycoform II (4b) of the SCWP from \(G. \) tepidamans GS5-97\(^T \). The characteristic differences in the anomeric and methyl regions as discussed in the text are evident from the peak patterns and the numeric integrals. The peak labels indicate the assignments using the one-letter code from Figure 1. The integrals were normalized on the anomeric signal of unit B (the drawing amplitudes of the low and high frequency parts of the spectra are scaled differently to fit to the available space).
were subsequently lyophilized and investigated by NMR spectroscopy.

3.3. NMR spectroscopic analysis

All 1H, 13C, and 15N NMR spectra were obtained at a sample temperature of 313.4 K on a Bruker DRX 500 MHz instrument equipped with a triple resonance inverse detection (TXI; 1H, 13C, 15N; inner coil tuned for 1H) cryogenically cooled probe (radio frequency coil temperature 30 K) with a built-in z-gradient coil. Typical 90° pulse lengths were 9 μs for 1H, 13 μs for 13C, and 45 μs for 15N. Standard gradient enhanced pulse programs supplied in the instruments’ manufacturer’s library were used. Lyophilized glycoform I (5.5 mg) and glycoform II (4 mg), respectively, were dissolved in 450 μL of 99.96% 2H2O, except for the 15N/1H experiments, where a mixture of 90% H2O and 10% 2H2O was used as solvent. Spectra were referenced with respect to the methyl signal of external sodium trimethylsilylpropionate (TSP) at 0.0 ppm. In the 1H observation dimension, 4 K data points were acquired at a spectral width of 5 kHz, with the carrier frequency set to the residual water signal. In the indirect carbon dimension, 512 K data points or 2K data points (for high resolution phase sensitive HSQC and magnitude-mode HMBC spectra) at spectral widths of 100 ppm (HSQC-type experiments) or 190 ppm (HMBC) were used. In HSQC-TOCSY experiments a mixing time of 60 ms was used with a pulsed (MLEV) spin lock field of 3.13kHz. GARP decoupling was employed for 13C and 15N during proton detection, where applicable. NOESY mixing times were 100 ms. Up to 128 transients were recorded per evolution time increment.

31P spectra were recorded on a Bruker Avance AV 600 MHz spectrometer at the same sample temperature using a BBO (BB, 1H; inner coil tuned for 31P) probe with broadband proton decoupling (WALTZ). 85% H3PO4 served as external reference.

Chemical shifts are given in ppm with precision of ±0.12/±0.2/±0.02/±0.2 ppm for 13C/15N/1H/31P spectra, respectively. Coupling constants are given in Hz, with precision of 0.1/0.5 Hz for 1H–1H/1H–13C couplings. All experimental data were zero-filled to double or to quadruple, in case of the 13C dimension of HMBC, the number of experimental points. Linear prediction was used instead of zero-filling for the processing of the indirect dimensions in heteronuclear experiments prior to Fourier transformation. All spectra were baseline-corrected using automatic 5th degree polynomial baseline correction. The software XWINNMR version 3.5 (Bruker BioSpin) was used for all acquisition and processing.

Acknowledgements

We thank Sonja Zayni and Andrea Scheberl for excellent technical assistance. The work was supported by the Austrian Science Fund, projects P15612-B07 and P15840-B10 (to P.M.) and P15380 (to N.M.) and the Austrian-Croatian joint research project 91102/03-06 (OAD-Project 13/04, to V.S. and N.M.).

References