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Abstract - We revisited Cauchy Machine for solving blind
space-variant imaging problem on the pixel by pixel basis.
Under-determinacy of the pixel by pixel blind-matrix
inversion was accomplished non-statistically by a physics-
constraint of open information systems in a dynamic
balance by minimizing the thermodynamics free energy
H=U-T0S where U is estimation error energy, T0 is
temperature and S is the entropy. Solution was found
through algorithm that computes the unknown source
vector and unknown mixing matrix using Cauchy
Machine to find the global minimum of H for each pixel.
We demonstrated the algorithm capability to perfectly
recover images from the noise free linear mixture of
images. Capability of the Cauchy Machine to find the
global minimum of the ‘golf hole’ type of landscape has
been demonstrated in higher dimensions with a less
computation complexity than an exhaustive search
algorithm.

I. INTRODUCTION
Ackley, Hinton & Sejnowski [1] had developed Boltzmann
Machines and demonstrated on a supercomputer in a several
days to generate the "Net-talk" of a child pronunciation.
Geman & Geman [2] had proved that simulated annealing
algorithm based on Boltzmann thermal noise would require a
slow cooling schedule inversely proportional with the
logarithm of the time steps. Szu et al. [3,4] had proved that
Cauchy color noise, rather than Boltzmann thermal noise,
could achieve the global optimization in a much faster
cooling schedule that is inversely proportional with the time
steps. Important novelty of this paper is implementation of the
2D Cauchy machine to find the global minimum of the ‘golf
hole’ type of landscape that arises in deterministic blind
inversion of the space-variant imaging problems, Szu and
Kopriva [5,6], right side on Figure 1. In the ‘ocean’ type
landscape, left side on Figure 1, the single minimum can be
found by ordinary deterministic gradient descent algorithm.
However, constrained optimization problems very often result
in multiple minimums with the ‘lake’ type of landscape,
middle of the Figure1, or ‘golf hole’ type of landscape, right
side of the Figure 1. For such cases the gradient descent
algorithm will be trapped in some of the local minimums.
Stochastic search based on simulated annealing theory [1-4]
enables non-convex optimization algorithm to escape from
the local minima. It has been

proven that convergence of the stochastic search based on the
Cauchy distribution with unbounded variance (Cauchy
Machine), [3,4], is inversely proportional with time while
convergence of the stochastic search algorithms based on
Gaussian distribution (Boltzmann Machine), [1], is inversely
proportional with the logarithmic function of time [2].
Convergence of the Cauchy Machine has been demonstrated
in [4] for a 1D double-well potential function and the 2D
equivalent of which is shown in the middle of the Figure 1
(the ‘lake’ type of landscape). The Helmholtz free energy
based objective function used in blind space-variant imaging
problems, [5,6], has from the global optimization point of
view a very difficult ‘golf hole’ type of landscape, right side
on Figure 1.

Figure 1. From left to right are 2D objective functions with
ocean like landscape; multiple lakes like landscape; golf hole
like landscape.

We demonstrate in this paper, according to our knowledge for
the first time, application of the 2D Cauchy Machine on the
global minimization of the ‘golf hole’ type of landscape
which comes from the real world constrained optimization
problem such as blind de-mixing of the space-variant mixture
of images, [5,6]. New solution for deterministic blind space-
variant imaging problem is proposed as a marriage of the
unsupervised feed-forward type of the Lagrange Constraint
Neural Network (LCNN), [7,5,6], Figure 2, and 2D Cauchy
Machine, [3,4]. Unlike statistical independent component
analysis (ICA) algorithms [8,9,10] solution is deterministic
and solves the problem on the pixel by pixel basis. Hence, we
may assume blind inversion imaging problem to be space-
variant. 2D Cauchy Machine is employed as a Fast Simulated
Annealing (FSA) algorithm to find an unknown de-mixing
matrix associated with the global minimum of the Helmholtz
free energy while MaxEnt like algorithm is used to find the
distribution of the source vector with the maximal entropy
under given macroscopic constraints defined by data vector
itself [3,4].



Brief description of the blind space-variant imaging problem is
given in Section II while more details can be found in [5].
Section III describes application of the 2D version of the FSA
algorithm based on the Cauchy Machine theory, [3,4], on the
blind space-variant imaging problem. In Section IV we
demonstrate capability of the 2D Cauchy Machine to find the
global minimum of the very difficult ‘golf hole’ type of
landscape. Performance comparison in terms of computational
complexity in relation to the exhaustive search approach is also
given in Section IV. Here we also demonstrate the algorithm
capability to perfectly recover images from the synthetic noise
free linear mixture of two images. Conclusion is given in
Section V.

II. BLIND SPACE-VARIANT IMAGING PROBLEM

Data model for blind space-variant imaging problem is defined
with:
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where X
r

and S
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are n and m dimensional column vectors of
integers representing measured data and unknown sources
respectively with nm ≤ and [A] being nxm unknown mixing
matrix. The subscript (p,q) denotes spatial coordinates i.e. the
blind imaging problem is formulated on the pixel by pixel
basis. Note that such formulation allows the mixing matrix
[A](p,q) to be spatially variant. The goal of the blind inversion
imaging algorithms is to find both the unknown source vector

S
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and an unknown mixing matrix [A] based on data

vector X
r

only. We shall drop (p,q) subscript in the subsequent

derivations in order to simplify notation. Because both X
r

and
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have the physical interpretation of intensity the positivity
constraint is imposed on them:
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If the unknown mixing matrix has physical interpretation of the
spectral reflectance matrix as in remote sensing, [5,6], or point
spread function of the optical or non-optical imaging system
than positivity constraints must be imposed on [A] too:
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We shall rewrite (1) in a slightly different form:
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With (4) we have introduced unknown magnitude of the source
vector N that helped us to assign to the components of the

scaled source vector ,S
r

the meaning of probability because due
to (5) they satisfy the constraint:
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Solution of deterministic blind space-variant imaging problem
(1) is given by finding unknown de-mixing matrix

1][][ −≅ AW and unknown source vector S
r

based on the data

vector X
r

only on the pixel-by-pixel basis. Feed-forward type
of the Lagrange constraint neural network shown on Figure 2,

[5,7] is employed to find the unknown source vector S
r

and 2D
Cauchy Machine [3,4] is used to find the uknown de-mixing
matrix [W] at the global minimum of the ‘golf hole’ type of
landscape associated with the Helmholtz free energy:
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where Helmholtz free energy is defined with:
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and Shannon entropy was approximated by:
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where KB represents Boltzmann’s constant and T0 represents
temperature. They are introduced in (8) due to dimensionality
reasons. Equivalence in minimization of H and U w.r.t. [W] and
N (7) is due to the fact that Shannon entropy S in (8) does not
depend on [W] and N. Minimization of the objective function

(7) gives as a solution distribution )(Sp
r

with the maximal
entropy under given macroscopic constraints
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FSA algorithm based on Cauchy Machine looks for the global
minimum of the Helmholtz free energy (7)/(8) to find the
unknown de-mixing matrix while MaxEnt like algorithm is

used to find the most probable distribution ,)( SSp
rr

= for a given

doublet ( )N,W (l)(l) ][ where l denotes iteration index in a
solution of problem (7). Probability of the unknown source
vector is obtained at the thermodynamic equilibrium i.e.
minimum of the Helmholtz free energy (8) as, [5,7]:
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Lagrange multipliers, that have interpretation of virtual sources,
are updated as [5]:
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where k stands for iteration index related to the Lagrange
multipliers learning rule and l stands for the iteration index
related to the iterative solution of the optimization problem (7).

Figure 2. A Feed-forward Lagrange Constraint Neural
Network, [7,5].

At some iteration l output doublet ( ))()( ,][ ll NW is generated as
an output of the Cauchy Machine based FSA optimization
algorithm in an attempt to reach possibly global minimum of
the estimation error energy (7). For a given doublet

( ))()( ,][ ll NW the MaxEnt like algorithm (11)-(12) computes
the most probable solution for the source

vector )(,)()( lll SNS
rr

= . This represents feedback for the
Cauchy Machine algorithm that computes a new value of the
estimation error energy and generates a new

doublet ( ))1()1( ,][ ++ ll NW . After each iteration l is completed

we get a triplet ( ))(,)()( ,,][ lll SNW
r

. Algorithm accepts as a final

solution the triplet ( ),*** ,,][ SNW
r

for which the estimation
error energy (7) reaches a possibly global minimum

III. CAUCHY MACHINE SIMULATED ANNEALING
ALGORITHM FOR BLIND SPACE-VARIANT

IMAGING PROBLEM
As in [5,6] we model 2D space-variant imaging problem by
using two mixing angles θ andϕ :
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Based on (13) the unknown de-mixing matrix [W] is described
by two ‘killing’ anglesξ and ζ as [5]:









=








−

=
2

1

sincos

sincos

)sin(

1
][

w

w
W r

r

ζζ
ξξ

ξζ
(14)

Vector diagram representation of the mixing model
(3)/(13)/(14) is shown on Figure 3. The unknown de-mixing
matrix [W] is found at a global minimum of the Helmholtz free
energy objective function (7)/(8) using FSA based on 2D
Cauchy Machine. Therefore a 2D Cauchy probability density
function (pdf) in the killing angles domain is defined [3,4]:
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where K1 and K2 are normalization constants to be determined.
Due to the positivity constraints (3) the killing angles lie in the
domain:
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Figure 3. Vector diagram representation of the mixing model
(3)/(13)/(14).

Figure 4 Geometry relations between Cartesian ( )ζξ , and polar

( )ω,r coordinates.

If, based on Figure 3, we adopt the convention that for original
mixing angles θ and ϕ it applies the following:

θχϕ ≤≤ (17)

where χ is angle defined by data vector X
r

as:
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than domain of support for killing angles is narrowed according
to:
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which reduces the size of the search space. The 2D pdf (15) can
be transformed from the Cartesian ( )ξζ ,p to polar ( )ω,rp

coordinates using standard transformation from Cartesian to
polar coordinate system. Due to (19) the angle polar
coordinateω lies in:

maxmin ωωω ≤≤ (20)
where ωmin and ωmax are defined with:
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The radial coordinate r lies in:
],[ maxmin rrr∈ (22)

where rmin and rmax are given for a particular value of ω with:
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Geometry relations between Cartesian ( )ζξ , and polar ( )θ,r

coordinate systems are illustrated on Figure 4. Cartesian
pdf ( )ξζ ,p (15) can be written in polar coordinates ( )ω,rp as:
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Pdf 1)( Kp =ω is determined from the requirement:
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Normalization constant K2 is determined from the requirement:
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from which it follows:
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and also:
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Both distributions )(ωp and )(rp have to be generated from

the uniform distribution with the domain of support on [ ]1,0
interval. The guiding principle for designing generation law is:
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where x is random variable uniformly distributed on the
interval [ ]1,0 . It follows from (30):
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because p(x)=1. It follows from (32):
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We get from (33):
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where integration constant 0C is determined from the boundary

conditions that for ],[]1,0[ maxmin ωωω ∈⇒∈x which gives :

( ) minminmax ωωωω +−= x (35)
which is transformation law required for generating random

variable ω uniformly distributed in the interval ],[ maxmin ωω .
To find the transformation law for random variable r we have
to derive relation between uniformly distributed variable x and
random variable r the pdf of which is given by (29). It follows
from (31):
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where x is uniformly distributed on some interval [xmin,xmax] and
from (36):
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Here p(x)=const. is absorbed into K2 in (37). It follows from
(37):
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In (38) x is uniformly distributed on the interval [xmin, xmax] such
that:

minmin )( rxr = maxmax )( rxr = (39)
It follows from (38) and (39):
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Relation between random variable x uniformly distributed on
the interval [xmin, xmax] and random variable x~ uniformly
distributed on the interval [0, 1] is given through:
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Like in Boltzmann Machine based simulated annealing
algorithm [1] the new solution in terms of killing angles ( )ζξ ,

at some iteration k is accepted if either:
)1()( −< kHkH (42)

or if Metropolis criteria [1] is satisfied:
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where pk is uniformly generated probability and
)1()( −−=∆ kHkHEk is error energy at iteration k.

Metropolis criteria (43) avoids algorithm to escape from local
minima even if value of the Helmholtz free energy at iteration k
is greater than value at the previous iteration.

IV. SIMULATION RESULTS
We illustrate application of the 2D Cauchy Machine algorithm
on the 2D case of Eq.(4) given by (13). Un-mixing matrix [W]
is given by (14) where angles ζξ , are related to the angles

ϕθ , through, Figure 3:
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If according to (13) we choose 00 45,64 == ϕθ ,

N=8,s1=5,s2=3 Eq.(13) becomes:
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Figure 5. 2D plot of the log of inverse of (7) in the angle
domain. Note two very sharp peaks that according to (44) give

two solutions 0101 154,45 =−= ζξ and
0202 135,26 =−= ζξ .

Figure 5 shows log of the inverse of the error energy function
(7) as a function of angles ζξ , for given values of

N=8,sx=5,sy=3. Note two very sharp peaks that according to

(44) correspond two solutions 0101 154,45 =−= ζξ and

0202 135,26 =−= ζξ . Two solutions are consequence of the

non-unique representation of data vector (13) i.e.:

( ) ( ),,,,
xyyx sasbNsbsaNX

rrrrr
+=+= (46)

From the single pixel point of view this permutation is not a
problem. From the space variant imaging point of view it could
create problems because related components of two different
source vectors corresponding with two different pixels could be
assigned on two different images. If, based on vector diagram
on Figure 3, we adopt convention (17) this type of permutation
indeterminacy can be resolved for the space-variant case.
Figure 6 shows number of iteration necessary for 2D Cauchy
Machine algorithm (15)-(43) to find global minimum of the
‘golf hole’ type of error energy function (7) for 100 runs. Solid
line on Figure 6 represents fixed number of iteration required
by exhaustive search algorithm that in this example is 1972.
The average number of iteration per run using 2D Cauchy
simulated annealing algorithm was 1684 while exhaustive
search required 1972 iterations to find solution. This gives an
estimate of the speed-up factor as 1972/1684≈1.171 or 17%.

Figure 6. Number of iterations per run for overall 100 runs
necessary to find global minimum of the error energy function
(7) by using 2D Cauchy Machine FSA algorithm (15)-(43)
(dashed line) and exhaustive search algorithm (solid line).

We now mix two images by a mixing matrix that has been
changed from pixel to pixel in order to simulate the space
variant imaging problem. Angles θ and ϕ are changed column

wise according to Figure 7 i.e. for every column index angles
were changed for 10 and mutual distance between them was 40.
Figure 8 shows from left to right two source images, two mixed
images, two separated images using 2D Cauchy Machine blind
inversion algorithm (7)-(43) and two separated images using
Infomax ICA algorithm, [9]. Thanks to the fact that Cauchy
Machine blind inversion algorithm solves the problem on the
pixel-by-pixel basis the recovery was perfect although mixing
matrix was space variant. Due to the space variant nature of the
mixing matrix Infomax algorithm failed to recover the original
images.



Figure 7. Change of the angles vs. column index . Solid line -
ϕ angle; dashed line - θ angle.

Figure 8. From left to right are: source images; space variant
noise free mixture; error free recovery of the source images
using 2D Cauchy Machine blind inversion algorithm (7)-(42),
recovery of the source images using ICA Infomax algorithm
[9].

V. CONCLUSION
A 2D Cauchy machine capable of solving space-variant
imaging problem on the pixel-by-pixel basis has been
presented. This is accomplished by minimization of the
Helmholtz free energy as an objective function. It has been
demonstrated that Helmholtz free energy has stable global
minimum in the domain of support of the un-mixing matrix.
Because of the ‘golf hole’ type of landscape of this objective
function it is almost impossible to reach it by means of the
gradient descent algorithms. It has been demonstrated that 2D
Cauchy machine is capable to find a global minimum in such a
difficult landscape under significantly less computational time
than exhaustive search technique. Performance of blind
inversion algorithm based on 2D Cauchy Machine has been
demonstrated on the perfect recovery of images from the
synthetic noise free space-variant linear mixture of two images.

Due to the space-variant nature of the mixture ICA algorithms
fail to recover unknown source images.
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