The antioxidant capacity and oxidative stability of virgin olive oil enriched with phospholipids

Olivera Koprivnjak a,*, Dubravka Škevin b, Šrečko Valič c,d, Valerija Majetić a, Sandra Petričević e, Ivica Ljubenkov b

a Department of Food Technology and Control, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
b Ruder Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
c,e SMS Food Development Center, Kurtovića bb, 23231 Klis, Croatia
d Dubravka Škevin b, Srec’ko Valic’ c,d, Valerija Majetic’ a, Sandra Petricˇevic´ e, Ivica Ljubenkov b

Abstract

Virgin olive oil (VOO) enriched with phospholipids (soy lecithin) up to the levels present in seed oils (from 2.5 to 10.0 g/kg) was studied as a potential functional food. Lecithin addition slightly increased the concentration of tocopherols and considerably increased K270 values. In the fatty acid composition, an increase of linoleic and a slight decrease of oleic acid were observed, as the decrease of monounsaturated/polyunsaturated fatty acid ratio. The radical-scavenging activity was evaluated by two methods: electron spin resonance spectroscopy using galvinoxyl free radical and VIS spectroscopy measurement of the disappearance of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical. Results indicate that lecithin addition retards the scavenging activity of VOO that is ascribed to the bipolar character of lecithin and its ability to entrap hydrophilic antioxidants. The effect of lecithin addition on the oxidative stability of VOO was evaluated by the Rancimat method, and a positive linear correlation (r = 0.9849) with induction time was found.

© 2008 Published by Elsevier Ltd.

1. Introduction

Phospholipids (PL) are minor constituents of seed oils, usually present in a concentration range of 10–20 g/kg (Bernardini, 1983). They are generally considered as synergists of phenolic antioxidants (Hidalgo, Nogales, & Zamora, 2005), but there is little information about those properties based on the determination of radical-scavenging activity. Ramadan, Kröh, and Mörsel (2003) have reported that PL could contribute to the radical-scavenging activity of different seed oils dissolved in toluene toward galvinoxyl free radical. The study of the lipid fraction of different vegetable oils by Espin, Soler-Rivas, and Wichers (2000) have concluded that PL have direct radical-scavenging activity toward the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical, although this is much lower than that of α-tocopherol.

In the context of functional food formulation, the addition of PL as synergists of phenolic antioxidants could be particularly interesting in the case of virgin olive oils (VOOs). They contain hydrophilic phenols, with known radical-scavenging activity (Carrasco-Pancorbo et al., 2005), in the range 40–800 mg/kg, as well as tocopherols in the range 100–400 mg/kg (Psomiadou, Tsimidou, & Boskou, 2000). On the other hand, the amounts of PL in VOOs are 300–400 times lower than those in seed oils (Koidis & Boskou, 2006).

The aim of this work was to investigate the possibility of PL enrichment of VOOs up to the concentration levels similar to those of seed oils. The influence of such high PL content on the antioxidant capacity of integral VOO was investigated using two direct determination methods. Electron spin resonance spectroscopy (ESR) applied on a sterically protected and resonance-stabilized galvinoxyl free radical was proposed by Quiles, Ramirez-Tortosa, Gomez, Huertas, and Mataix (2002) as a rapid and very sensitive method. The measurement of disappearance of DPPH free radical by VIS spectroscopy is the method widely used for the estimation of antioxidant activity of different foods, also applied to whole vegetable oils (Espin et al., 2000; Valavanidis et al., 2004). Besides, the influence of PL addition on the oxidative stability of VOO was evaluated by the accelerated oxidation test (Rancimat).

2. Materials and methods

2.1. Materials

A filtered extra VOO was purchased from the local Croatian olive oil producer. The commercial soy lecithin granules, containing...
138 passed through the column. After the elution, 10 ml of hexane 137 6 ml of hexane; 1.00 ± 0.01 g of oil dissolved in 4 ml of hexane was 134 the method for bitter index determination described by Gutiérrez 132 of 0.60 ml/min. Tocopherol standards (129 length of 290 nm and an emission wavelength of 330 nm. A solu- 126 held at 30 124 123 weighed into a 10 ml volumetric flask and diluted to the mark with 122 ing to the standard method (ISO, 1997). 0.1 g of oil sample was 121 equipped with a Varian ProStar 363 fluorescence detector) accord- 120 Tocopherols were analyzed by HPLC (Varian ProStar HPLC 2.4. Determination of tocopherols 118 position were determined according to EC Regulation 2568 (1991) . 2.3. Determination of standard quality and composition parameters 114 111 solution was used to prepare the samples in the concentration 110 centration in the primary solution and extra VOO. The primary 105 and in extra VOO was determined from the acetone insoluble mat- 103 and filtered over the quantitative filter paper with medium wide 100 part of lecithin. The same procedure of mixing and heating was ap- 98 laboratory mixer with the propeller blade at 400–500 rpm, then, 97 VOO (primary solution). The blend was stirred for 30 min using a 93 Tubes (1 ml) were supplied from Supelco Inc. (Bellefonte, PA). 91 acid were from Sigma Chemical Co. (St. Louis, MO). Paraffin oil was 89 and toluene p.a. were supplied from Kemika (Zagreb, Croatia). 88 tert-butylhydroperoxide p.a. were from Merck KGaA (Darmstadt, Germany). Methanol p.a. 84 and isooctane of UV-spectrophotometric quality were purchased 83 phatidylinositol) were supplied from Life Time Nutritional 82 <1% of water and 97% of phosphatides (approximately 70% of phos- 81 phatidylethanolamine, 20% of phosphatidylcholine and 7% of phos- 80 phatidylisin) were supplied from Life Time Nutritional Specialties Inc. (Anaheim, USA). Ethyl acetate p.a., n-hexane p.a. 79 and isooctane of UV-spectrophotometric quality were purchased 78 from Panreac (Barcelona, Spain). Propan-2-ol for HPLC was ob- 76 tained from Sigma Chemical Co. (St. Louis, MO). Paraffin oil was 75 bought from Ritoso d.o.o. (Porec, Croatia). Superclean TM LC-18 SPE 74 Tubes (1 ml) were supplied from Supelco Inc. (Bellefonte, PA).

2.2. Sample preparation

Fifty grams of soy lecithin granules were mixed with 500 ml of oil heated to 40 °C, in order to prepare lecithin concentrate in extra 192 time needed for the appearance of a sudden water conductivity 190 equipment at 120 °C with continuous air flow of 10 l/h passing through the samples. The conductivity cells were filled with 60 ml of deionised water (2 µS/cm). The time needed for the appearance of a sudden water conductivity rise, caused by the adsorption of volatiles deriving from oil oxidation, was registered as the induction time (t) for the reaction due to the adsorption of volatiles deriving from oil oxidation, was registered as the induction time (t) for the reaction 154 time zero (t = 0 min). The loss of the signal intensity (I) after the reaction time t was calculated as: \[I = \frac{\text{A}_0 - \text{A}}{\text{A}_0} \times 100\% \], where \(\text{A}_0 \) is the signal intensity of galvinoxyl radical in oil solution measured at time t. Each sample was analyzed in triplicate and the results are presented as mean values ± standard deviation.

2.7. Measurements of radical-scavenging activity using VIS spectroscopy

The reaction mixture of oil and DPPH· solution was prepared according to the procedure described by Kalantzakis, Blekas, Pegkilo- 150 time needed for the appearance of a sudden water conductivity 148 and modulation amplitude 0.11 mT. Samples were prepared according to the method described by Papadimitriou et al. (2006). The freshly prepared 0.15 mM galvinoxyl free radical solution in isooctane was added to the VOO samples in order to obtain a 4% (w/v) oil solution. The oil solution was quickly mixed in the flask and immediately put into the standard ESR tube. ESR spectra were recorded during 30 min, starting from the first minute after the oil and free radical solution contact. Recording intervals were 1 min during the first 10 min of the reaction and 2 min during the rest of the measuring process. The signal intensities of galvinoxyl free radical were calculated by the double integration of ESR spectra, using the EW (EPRWare) Scientific Software Service program and expressed in arbitrary units. The signal intensity of the pure 0.15 mM galvinoxyl solution, measured immediately before starting the sample measurement, was taken as the reference signal intensity, i.e. signal intensity of the sample (A0) for the reaction 164 time zero (t = 0 min). The loss of the signal intensity (I) after the reaction time t was calculated as: \[I = \frac{\text{A}_0 - \text{A}}{\text{A}_0} \times 100\% \], where \(\text{A}_0 \) is the signal intensity of galvinoxyl radical in oil solution measured at time t. Each sample was analyzed in triplicate and the results are presented as mean values ± standard deviation.

2.8. Determination of oxidative stability by Rancimat method

Oil samples having a mass of 3.0 g were heated in the Rancimat equipment at 120 °C (Metrohm Ltd., Herisau, Switzerland) with a continuous air flow of 10 l/h passing through the samples. The conductivity cells were filled with 60 ml of deionised water (2 µS/cm). The time needed for the appearance of a sudden water conductivity rise, caused by the adsorption of volatiles deriving from oil oxidation, was registered as the induction time (t).

2.9. Statistical analysis

One-way analysis of variance at 5% significance level was used to determine any significant difference in the radical-scavenging
activity and oxidative stability between VOO samples with different concentrations of PL. The mean values were compared by the Tukey honest significant difference test. The homogeneity of variance was previously tested by Levene’s test. In the case of insufficient homogeneity, a logarithmic transformation of original data was carried out. All statistical analyses were performed using the software package Statistica 7.1 (StatSoft Inc., Tulsa, OK, USA).

3. Results and discussion

3.1. General

The VOO used in this experiment was of high quality, having low values of free fatty acids, peroxide and K-numbers (Table 1). The addition of lecithin did not cause any important changes of quality parameters, except for K270, that had a positive linear correlation with the lecithin concentration \(r = 0.9858 \), suggesting the presence of secondary oxidation products and conjugated trienes in the commercial lecithin. In the sample with 10.0 g/kg of added lecithin, the value K270 exceeded the limit for extra VOO, that is 0.22. Oxidation products make oil more susceptible to oxidation and free radicals formation, which could react with antioxidants in VOO and, thus, reduce its antioxidant activity.

The used VOO had the usual value of total tocopherols. The addition of lecithin slightly increased the total content of tocopherols and decreased the \(\alpha/\gamma \) tocopherol ratio. These changes are favourable for the antioxidant activity of lecithin-enriched VOOs, since \(\gamma \)-tocopherol is a more efficient antioxidant than is \(\alpha \)-tocopherol.

Standard liquid/liquid extraction of phenolic compounds from the oils enriched with lecithin was not possible, due to the formation of a stable emulsion. Therefore, the total content of hydrophilic phenols was determined in the extract obtained by the solid phase extraction. Pure VOO had a high level of those compounds while, in the samples enriched with lecithin, their concentrations were 3–4 times lower (Table 1). This may not necessarily mean a degradation of phenols, since the bipolar character of lecithin could also have an effect on the extraction of those compounds during this analytical procedure. The polar moiety of lecithin can bind the hydrophilic phenols, hindering their retention on a solid phase during the fat elimination step by hexane. Thus, the total phenols content could not be reliably correlated with the results of oil antioxidant activity and oxidative stability.

According to the fatty acid composition (Table 2), the VOO sample had quite a high content of oleic acid. Taking into account soybean origin of the commercial lecithin used, a moderated reduction of the monounsaturated/polyunsaturated fatty acids ratio was expected. There was a small decrease of oleic acid and an increase of polyunsaturated acids (from 5.4% in pure VOO to 5.9% in the sample with 10 g/kg of lecithin). Tuberoso, Kowalczyk, Sarritzu, and Cabras (2007) found a positive linear correlation between antioxidant activity of vegetable oil lipophilic fractions and the polyunsaturated fatty acids ratio in the range 13–71%. In comparison with that range, a negligible contribution of such a small increase of polyunsaturated fatty acids to the antioxidant activity of VOO enriched with lecithin could be expected.

In ESR radical-scavenging measurements, galvinoxyl free radical was used as a scavenging object. The stability of its freshly prepared solution in a non-polar solvent (isooctane, polarity index \(P = 0.4 \)) was recorded during 30 min under the same conditions as for the sample measurement. Spontaneous loss of the galvinoxyl signal intensity was 1%; thus, it was necessary to prepare and use a fresh solution daily.

The direct radical-scavenging activity of commercial lecithin used in the experiment was evaluated in its 10.0 g/kg solution in paraffin oil. The matrix is free of any compound with such activity. The loss of the galvinoxyl signal intensity caused by lecithin was about 5% that is a much lower value than that of the VOO samples (Fig. 1). The inhibition of galvinoxyl free radical in the case of the VOOs was very rapid. During the first minute of scavenging reaction, 48% of the signal intensity was lost in the sample having 10.0 g/kg of lecithin and 68% in the pure VOO. It seems that during the first minute, the reaction followed linear time dependence, after which it slowed down abruptly and the signal intensity decreased exponentially. This strongly suggests that the scavenging process could be governed by two different reaction mechanisms. Therefore, the radical-scavenging activity of oil samples was considered at two key moments: the first one, for \(t = 1 \) min, which was the first technically possible point of measurement, and the second one, for \(t = 30 \) min, taken as the end-point (Fig. 2). The results indicate that the addition of lecithin slowed down the scavenging activity of the virgin olive oil toward galvinoxyl free radical.

Table 1

Standard quality parameters, tocopherols and total phenols of VOOs enriched with lecithin

<table>
<thead>
<tr>
<th>Lecithin concentration (g/kg)</th>
<th>FFA (%)</th>
<th>Peroxide no. (mmol/kg)</th>
<th>K232</th>
<th>K270</th>
<th>Tocopherols (mg/kg)</th>
<th>Total phenols (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.3</td>
<td>2.0</td>
<td>1.70</td>
<td>0.13</td>
<td>146</td>
<td>155</td>
</tr>
<tr>
<td>2.5</td>
<td>0.3</td>
<td>2.1</td>
<td>1.68</td>
<td>0.16</td>
<td>140</td>
<td>157</td>
</tr>
<tr>
<td>5.0</td>
<td>0.4</td>
<td>2.5</td>
<td>1.65</td>
<td>0.20</td>
<td>146</td>
<td>162</td>
</tr>
<tr>
<td>7.5</td>
<td>0.4</td>
<td>2.5</td>
<td>1.61</td>
<td>0.22</td>
<td>167</td>
<td>181</td>
</tr>
<tr>
<td>10.0</td>
<td>0.4</td>
<td>2.4</td>
<td>1.73</td>
<td>0.25</td>
<td>162</td>
<td>178</td>
</tr>
</tbody>
</table>

Table 2

Fatty acid composition (%) of VOOs enriched with lecithin

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Lecithin concentration (g/kg)</th>
<th>0.0</th>
<th>2.5</th>
<th>5.0</th>
<th>7.5</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 14:0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 16:0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 16:1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 17:0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 18:0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 18:1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 18:2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 18:3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 20:0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 20:1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C 22:0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MU/PU</td>
<td>14.9</td>
<td>14.6</td>
<td>14.4</td>
<td>13.8</td>
<td>13.6</td>
<td>13.6</td>
</tr>
</tbody>
</table>

FOCH 7251
6 April 2008 Disk Used
ARTICLE IN PRESS

Please cite this article in press as: Koprivnjak, O. et al., The antioxidant capacity and oxidative stability of virgin olive oil ..., Food Chemistry (2008), doi:10.1016/j.foodchem.2008.03.045

* Results are means of two replications.

a Free fatty acids.
b Monounsaturated/polyunsaturated fatty acids ratio.
The antioxidant capacity and oxidative stability of virgin olive oil ... Food Chemistry (2008), doi:10.1016/j.foodchem.2008.03.045

radical. The effect was more emphasized at the beginning of the reaction while, after 30 min only, the samples with higher lecithin concentrations (7.5 and 10.0 g/kg) showed significantly lower activities than those of pure VOO.

An additional investigation of the influence of lecithin on the radical-scavenging activity of virgin olive oil was done by VIS spectroscopy, using the DPPH free radical dissolved together with a VOO sample in a polar solvent (ethyl acetate, P = 4.3). The radical-scavenging activity of integral vegetable oils toward the DPPH radical has been previously reported by Valavanidis et al. (2004) and Espin et al. (2000). Comparing different solvents used for this purpose, it has been concluded that ethyl acetate shows the best performance. In our experiment, the spontaneous loss of absorbance of a freshly prepared DPPH solution, recorded during 30 min under the same conditions as for the sample measurement, was 0%, and this confirms the suitability of ethyl acetate.

The results of VIS spectroscopy are in agreement with those of ESR measurements. The direct radical-scavenging activity of the commercial lecithin dissolved in paraffin oil was even lower in this case: the loss of DPPH absorbance (%)

by nonlinear regression to the double-exponential equation. They assume that this could be due to the presence of two groups of antioxidants, dissimilar in their scavenging velocity. These facts support our hypothesis of two reaction mechanisms during the scavenging of galvinoxyl radical. Differences in the reaction dynamics obtained by the ESR and VIS methods may be caused by different affinities of the antioxidants present in VOO toward the used free radicals and different polarities of the used solvents. According to the “polar paradox” cited by Ramadan et al. (2003), non-polar media (isooctane) used in ESR measurements could enhance the activity of hydrophilic antioxidants from VOO (phenols). This can partly explain a sharp loss of the ESR signal intensity at the beginning of the reaction. On the other hand, in the case of VIS spectroscopy, the polar solvent (ethyl acetate) favours activity of lipophilic antioxidants (tocopherols) that could be associated with a slower process of DPPH free radical-scavenging. In addition, the free electron of DPPH seems to be sterically more protected than that of galvinoxyl.

Nevertheless, the main observation deriving from the obtained results is that, in both cases, the addition of lecithin at levels similar to those of seed oils slows down the scavenging activity of virgin olive oil. Possible reasons for the radical-scavenging inhibition behaviour of lecithin could be related to the oxidation products contained in it. However, the impact of the bipolar character of lecithin could be even more important. Koga and Terao (1995) claim that bipolar molecules, when dissolved in an organic solvent, form reverse micelles with polar groups directed toward the interior.
The hydrophilic antioxidants may be entrapped in such polar cores that make some type of physical barrier between them and free radicals. Applying the trans-electron microscopy to the bulk oil with an addition of different commercial emulsifiers, Schwarz et al. (2000) observed, in some cases, the formation of lamellar structures. They reported that those emulsifiers could decrease the activity of polar phenolic antioxidants (gallic acid and propyl gallate), and that supports the hypothesis of the physical barrier, mentioned above.

3.3. Oxidative stability

To investigate the influence of lecithin addition on the oxidative stability of the VOO samples, the Rancimat method was applied. This accelerated oxidation test includes air flux of 3–20 l/h across oil heated at 100–130 °C. Results from Fig. 5 show that, in such conditions, the addition of lecithin significantly increases oxidative stability, despite a somewhat less favourable mono and polyunsaturated fatty acid ratio in the VOOs enriched with lecithin. A positive linear correlation \(r = 0.9849 \) between the induction time and lecithin concentration is in accordance with the results of Pokorny, Davidek, Viereczkova, Ranny, and Sedlacek (1990). They concluded that lecithin present in higher concentrations (0.5–2.0%) has a pronounced antioxidation inhibition activity toward seed oils, but only a moderate one at low levels (0.02–0.1%). Likewise, Hidalgo, Leon, and Zamora (2006) have reported that the addition of pure phosphatidyethanolamine at levels of 200–400 mg/kg significantly increased the oil stability determined by the Rancimat method. They demonstrated that reactive carbonyls, produced during the oil heating, could react with the primary amino group in phosphatidyethanolamine, giving pyrrolized PL, hercrocresic residues with antioxidant properties. Furthermore, the amino group of phosphatidyethanolamine and phosphatidylcholine can facilitate hydrogen or electron donation to tocopherols (Ramadan et al., 2003). Since, in our experiment, the addition of lecithin increased the total content of tocopherols and decreased the \(\alpha/\gamma \) tocopherol ratio, this could be an additional contribution to higher oxidative stability of enriched VOOs. Besides, other PL with no primary amino group could act by chelating metals via phosphate groups and creating a barrier between the oil and air interface.

These mechanisms explain a negative linear correlation between the oxidative stability determined by the Rancimat method and the radical-scavenging activities of samples enriched with lecithin. The correlation coefficients in the case of the ESR method were \(r = -0.9297 \) (\(t = 1 \) min) and \(r = -0.7745 \) (\(t = 30 \) min), while for VIS spectroscopy they were \(r = -0.7772 \) (\(t = 1 \) min) and \(r = -0.7123 \) (\(t = 30 \) min).

4. Conclusion

Contrary to the expectations based on the previously reported synergism between PL and liposoluble phenolic antioxidants, the addition of commercial soy lecithin (up to concentrations similar to those of seed oils) decreased the antioxidant activity of VOO.

Since the main antioxidants in VOOs are hydrophobic phenols, bipolar molecules of PL could obstruct their activity, surrounding and isolating them from the matrix in which they are present. Therefore, from the nutritional point of view, VOO enriched with PL could be interesting as a functional food, but its possible lower stability during storage at ambient temperature must be taken into account. This will be the objective of our further research.

Acknowledgements

The present results are derived from the scientific project “Bio-active and volatile compounds of virgin olive oil in processing and finishing” (062-058096-0284), supported by the Ministry of Science, Education and Sports of Republic of Croatia. Authors are grateful to Marina Munari and Sandra Nedral for their technical assistance.

References

Please cite this article in press as: Koprivnjak, O. et al., The antioxidant capacity and oxidative stability of virgin olive oil ... Food Chemistry (2008), doi:10.1016/j.foodchem.2008.03.045

