Investment Risk Assessment of Potential Hydrocarbon Discoveries in a Mature Basin

Case Study from the Bjelovar Sub-Basin, Croatia

By T. MALVIC and I. RUSAN*

Abstract
The first part of the paper considers the basic principles of geological risk calculation (POS) based on regional geological analysis. It includes estimation of expected value for outlined potential hydrocarbon discoveries, and eventually calculation of so called ‘risk money’ for available company budget. The described methodology of geological probability calculation is often applied and adapted for characteristic geological settings in different petroleum provinces around the world. It was tailored and validated for a comprehensive input dataset collected in the petroleum province of the Bjelovar Sub-Basin, adapted by dividing up geological events into five probability classes as follows: 1.00 for proven, 0.75 for highly reliable, 0.50 for fairly reliable, 0.25 for unreliable and 0.05 for an undefined event. The methodology is applied to evaluate a potential hydrocarbon discovery area of 200,000 m² (1,258,000 barrels) of recoverable oil in the analyzed area. The POS of the potential discovery is 28.48% (in Paleozoic-Middle Miocene play).

The second part considers the calculation of net present value for the size of potential discovery, which is 13.52 million USD. The investment risk for such a prospect (in mentioned play) was evaluated by using an exponential utility function based on the company’s budget of 50 million USD. The amount of 850,000 risk-neutral dollars is calculated as the certain equivalent to be invested into potential discovery of the expected value of 2.42 million USD. The presented methodology could be easily applied to other Croatian parts of the Pannonian Basin System.

1 Introduction
Exploratory mature basins are generally characterized by the limited number of remaining undrilled prospects and by the smallish size of hydrocarbon volumes which can be reasonably expected to be discovered. In the case of exploratory success, the decision to appraise and develop the small sized mature basin discoveries would obviously depend on the discoveries’ economic viability. As a consequence, proving the economic viability is, in a mature basin setting, of primary importance.

The authors of this article have, for some time, assessed prospects of the Bjelovar Sub-Basin. The sub-basin, located in North-east Croatia, is part of the Pannonian Basin System. The Bjelovar Sub-Basin shows all the elements of an exploratory mature basin and thus is considered the appropriate target for economic viability analyses in mature basin environments.

Following industry standards, the authors’ evaluations particularly addressed the risks associated with hydrocarbon plays and prospects. To adequately honour the specifics of mature basin conditions, those analyses were complemented by assessments covering the investment risk and the related investment optimization.

In hydrocarbon exploration and production, geological, economical and technical risks are the main, yet not only risks to be dealt with in the assessment of investment risks. In a mature petroleum province, minimizing the geological and economic risks is the key to success. To adequately honour the mature basin conditions in our investment risk assessment, we went back to, i.e., chose the approach of Cozzolino [2], which allows an estimate of acceptable risk money for selected expected monetary values (EMVs; [4]) of postulated discoveries. Obviously, the “Cozzolino approach” complements the standard economic risk assessment which comprises (i) the assessment of the geological risk, and (ii) the assessment of the economic risk, whereby the latter – based on net present value (NPV) calculations – represents the integration of economic value and geological risk calculations.

To arrive at the aimed assessment of the investment risk and investment optimization in the Bjelovar Sub-Basin, an integrated study was performed, dealing with the following issues in consecutive order:

(1) the regional and petroleum geology of the sub-basin, with emphasis on the critical factors
(2) the geological risk, expressed as percentage probability of finding hydrocarbons in the target
(3) the economic risk, by integrating NPV, risk money and geological risk, and
(4) the investment risk, by essentially reviewing the risk money involved.

The data available for the investigation dealing with the investment risks relative to projects of the Bjelovar Sub-Basin, and as inventoried by the above items (1) to (4), are exclusively publicly accessible data. Obviously, the study benefited from the investigations performed by one of the authors (Malvic) to obtain his master (1998) and PhD (2003) degrees [6, 7].

In the above context it is also noted that none of the considered probabilities and financial values were taken from official or company owned reports.

2 The Regional Setting of the Bjelovar Sub-Basin
The Bjelovar Sub-Basin covers an area of 2900 km² and represents the southern part of the Drava Depression, i.e., the western margin of the Pannonian Basin System (Fig. 1). It is considered a mature hydrocarbon province.

The thickness of Neogene-Quaternary clastics, overlying Mesozoic and Paleozoic rocks, reaches a maximum of 3000 m. The most significant hydrocarbon potential is attributed to Lower and Middle Miocene clastic, coarse-grained reservoirs. Those reservoirs, of which the Middle Miocene reservoirs are the main ones, are associated with underlying reservoir units, which are fractured and weathered basement rocks. Both Miocene and Basement reservoirs are controlled by a common hydrodynamic system. The Lower and Middle Miocene reservoirs and traps are situated at depths between 800 and 1500 m. Additional reservoir potential may exist in the remains of algal reefs and siliciclastic breccias (Fig. 2). The second group of reservoirs is that of Upper Miocene sandstones. These sandstones are characterized by very variable reservoir properties. The reservoirs occur at depths of less than 1000 m. The prospectivity of the reservoirs is negligible, reflecting poor reservoir properties and the shallow depth of burial, whereby the latter obviously causes hydrocarbon degradation by meteoric waters (Fig. 2).

Source rocks of Ottangian to Sarmatian age are postulated to be present within two major synclines of the sub-basin at depths from

* Tomislav Malvic, Igor Ruson, INA-Industrija nafte, d.d., Zagreb, Croatia (E-mail: Tomislav.Malvic@ina.hr)
1600 to 2500 m. In those, oil maturity ($\Sigma T I = 15$) was likely to have been reached in the deepest parts [6, 7]. A significant part of the hydrocarbons was derived from the northwestern part of the Drava Depression (Fig. 1). Within the Drava Depression, the proven source rocks are represented by mudstones, marls and siltstones of Lower Miocene to Badenian age. With burial depths greater than 2000 m [1], they reached a high level of thermal maturation.

The sub-basin hosts a great number of hydrocarbon fields and - as a mature basin has been intensely drilled. Consequently, this is reflected in the wealth of data. They provide a reliable geological database of the studied area. This is particularly the case for field and reservoir data. The reservoirs' porosities vary in Miocene sandstones between 15 and 25%, in the breccia between 5 and 15%, whilst the fractured basement rocks are characterized by secondary porosities from 1 to 5%. Horizontal permeabilities vary from 0.05 to 336 millidarcies (mD). The effective thicknesses of the reservoirs are between 1 and 15 m, they are related in sandstones mostly with fluvial subfacies, in breccias (and partially conglomerates) with alluvial fan subfacies.

The majority of analyzed fields are in the late stage of production. Production started from the late sixties to early eighties. Total original hydrocarbon in place (OHIP) in the sub-basin is estimated at approximately 44×10^6 m3 of oil and 4250×10^6 m3 of gas. In the fields, the water cut varies from 50 to 90%.

The studied area is defined by several plays and related prospects. Each play can be characterized by several prospects having similar geological features [11, 15]. Two main plays have been identified:

1. the Paleozoic basement rocks and Middle Miocene breccia play, and
2. the Upper Miocene sandstones play.

The stratigraphic position of both plays is shown on Figure 2. As will be shown below, the geologic risks of both plays were calculated.

Using regional structural maps and palinspastic restorations of the sub-basin [6, 7], a detailed structural analysis was made. Data analysis showed that a new prospect would be smaller in size than previous discoveries, as it is expected to contain on average some 200,000 m3 of recoverable oil reserves [1.26]
Benefit from NDT's expanded range of services.

Committed to Technology
NDT Systems & Services is committed to being a technology leader. We are well known for our innovative and advanced technology for the inline inspection of pipelines. We will further enhance our capabilities and develop optimized inspection solutions for our customers in our center of excellence for ultrasonic technology in Germany and our center of excellence for magnetic flux leakage technology in the USA.

Committed to Service
The new NDT Systems & Services, incorporating the former Tuboscope Pipeline Services activities, is fully committed to providing high-quality pipeline services. Combining resources ensures that we can offer and deliver optimized inspection solutions where and when they are needed: reliability, responsiveness, and assurance are the service dimensions we want to be measured by.

Committed to our Customers
We at NDT Systems & Services are committed to you, our customers. We aim at exceeding your expectations and build up long-term relationships. We are committed to becoming your preferred partner, offering leading inspection technologies and a wide range of products and services. This includes geometry, mapping, metal loss, and crack inspections, as well as a range of advanced pipeline data analysis, management, and archiving software.

Committed to Pipeline Inspection
NDT Systems & Services is committed to the pipeline industry. Our field of expertise is automated non-destructive testing. The company’s founders have a long experience in the field of pipeline inspection. Together with the heritage of Tuboscope Pipeline Services as pioneer within the industry and a track record ranging back over 40 years, we are set to be the premier service provider for our industry.

NDT Systems & Services AG
Am Hosenbie 6
D-76297 Stutensee
Germany
Phone: +49 (0)72 44 74150
Fax: +49 (0)72 44 741597
www.ndt-global.de

NDT Systems & Services (America) Inc.
2833 Holmes Road
Houston, Texas 77031
USA
Phone: +1 713 799 5430
Fax: +1 713 799 5406
www.ndt-global.com

Circle No. 111
The USGS [14] published a similar value of 1×10^6 barrels as minimal recoverable oil in the potential discoveries of the Zala-Drava-Sava Mesozoic and Neogene petroleum systems. As indicated by recoverable oil in the potential discoveries of similar value of 1×10^6 barrels as minimal 1×10^6 barrels). The USGS [14] published a E&P ventures. Expert teams estimate the probability tables published for different petro-

x 10^6 barrels). The USGS [14] published a similar value of 1×10^6 barrels as minimal recoverable oil in the potential discoveries of the Zala-Drava-Sava Mesozoic and Neogene petroleum systems. As indicated by recoverable oil in the potential discoveries of similar value of 1×10^6 barrels as minimal 1×10^6 barrels). The USGS [14] published a E&P ventures. Expert teams estimate the probability tables published for different petro-

| 3 Assessment of the Geological Risks in the Bjelovar Sub-Basin |

Since many years probability calculations are in use to assess the geological risk of E&P ventures. Expert teams estimate the probabilities of a group of particular geological risk factors by using numerical values ranging from 0.0 to 1.0. Optionally, experts may also decide to employ geological probability tables published for different petroleum provinces around the world or to use those probability tables, yet correct them within certain ranges, reflecting their own data and knowledge base.

Obviously, introducing the probabilistic approach reflects the lack of certainty when predicting the presence or absence of geological factors ("play parameters") which contribute to the success in finding hydrocarbons. The probabilities arrived at have to however likewise be considered as a subjective value reflecting the applied methods, the database or the human factor. It means that different companies, teams and experts will use different approaches or databases, and obtain different results for the same play or prospect.

The geological probability is represented by the simple multiplication of five geological risk factors (Equation 1). The result represents the Probability of Success (POS) and describes the probability that hydrocarbons could be discovered.

$$ POS = p(\text{trap}) \cdot p(\text{reservoir}) \cdot p(\text{source_rocks}) \cdot p(\text{migration}) \cdot p(\text{HC_preservation}) $$

From equation (1) it is obvious that the approach applied in this article is based on the evaluation of five risk factors, i.e. trap, reservoir, source rocks, migration and hydrocarbon preservation. Exploration experts are partly used to employing seven risk factors, i.e. employing in addition the factors seal and coincidence. Yet, this risk identification which was taken from White [16], proved adequate to cover the Bjelovar Sub-Basin conditions. Moreover, similar calculations, based on five factors, were previously carried out for some potential discoveries in selected parts of the Sava and Drava Depressions. Maintenance of that approach rendered a valuable means of comparison. An appropriate geological database, including the characteristic geological events, was derived from available data published in previous regional studies of the Bjelovar Sub-Basin [6, 7]. The database was created in Access and linked to the executive computer code program in the Delphi language. The probabilities of each of the risk factors are described by several probability classes (mostly five or more, depending on approaches). Each class has unique discrete numerical values in the range between 0 and 1 that describe the probability of occurrence of selected events. Five probability classes are defined here in order to indicate equal importance of all possible geological events. We have defined the five probability classes in our own system describing the geological events as follows:

1.00 - proven geological event, 0.75 - highly reliable predictable event, 0.50 - fairly reliable predictable event, 0.25 - unreliable predictable event, 0.05 - missing event/undefined parameter.

It will be noted that our system gives special attention to the lowest probability class, i.e. to the 0.05 event. The "undefined parameter" addresses the lack of information. It does not

| Table 1: Geological events classified in five probability classes [9] |

Fig. 3 Geological events classified in five probability classes [9]

OG 70

OIL GAS European Magazine 2/2009
primarily identify an event of low probability, but suggests that the probability can not be estimated from the available dataset. This attribution to the lowermost probability class recognizes that we are dealing with a mature basin, where the per se unusual lack of data and/or knowledge is likely to reflect poor conditions (of whatever type).

Based on the approach described above and considering the inventory of geological events as depicted in Figure 3, the main plays of the Bjelovar Sub-Basin were assessed for their risks — with the following results:

1. The play called “basement rocks and Miocene breccia” has a geological probability value of 28% for a new hydrocarbon discovery.
2. The “Upper Miocene sandstone” play is characterized by a significantly lower value of 13% (not promising).

4 The Economic Risks of Potential Discoveries in the Bjelovar Sub-Basin

Essentially, the objective of assessments of the economic risks in E&P projects is to ascertain the project’s economic viability. Largely, the anticipated economic viability of the project depends on the geological risks (see Section 3.) relating to the project. The prediction of economic viability, i.e. the calculation of the expected monetary value is in simple terms based on the assessments of geologic risks, of the risk money involved, and of the present value and net present value respectively.

The present value (PV) is, by definition, the current value of one or more future cash flows, converted at some appropriate discount rate. The discount rate is used to convert the future value of an income stream to a present day value (considering inflation, currency exchange rate etc.).

5 Investment Risks and Investment Optimization

In the late 1970’s, Cozzolino [2, 3] presented calculations by which the author correlated the results obtained from basic economic evaluations (see above) with oil companies’ concerns, i.e. investment risks and the impact of economic risks on companies’ budgets. The following list displays the basic assumptions employed in our case study:

- \(R = \text{gross reward in million USD} \)
- \(C = \text{cost in million USD} \)
- \(p = \text{probability of success} \)
- \(r = \text{risk aversion factor in millionths} \)
- \(P = \text{probability of success} \)
- \(R_V = \text{risk-adjusted value} \)

The example of Figure 4 is relevant for an expected value of the hypothetical prospect worth 1.76 million USD, and a company’s working interest of 100%. The company with 200 million USD of annual exploration budget is characterized by a RAV of 95%. It means that for a risked play or prospect with the expected value of 1.76 million USD such a company may invest up to 95% of the value of play/prospect (equal to 1.67 million USD). However, an annual budget of 0.5 million USD generates a negative RAV. From a mathematical point of view this means that a small company will only make the investment if the RAV decreases to some lower value or via a joint venture with other (bigger) companies.
The targeted Bjelovar Sub-Basin potential discoveries will be small (2×10^6 m^3 of recoverable oil) and be characterized by a relatively low geological probability. For that reason we applied a risk-averse approach for estimating the financial risk. It includes the use of the exponential utility function as a special form of the utility function described by Equation (3). This function converts dollars into arbitrary units called utilities expressed in risk neutral dollars.

\[U(x) = rce^{-\frac{x}{r}} \]

Where:
- \(U \) = utility units in million risk neutral USD
- \(x \) = present value of potential discovery discounted with appropriate discount rate
- \(rce \) = risk aversion function or risk tolerance coefficient ("rce") reflects the company attitude toward risk, and is represented by an exponential curve.

In our calculation, the value of "r" is, as is commonly the case, set at 1/5 or 1/6 of the company's net worth [13]. Here the term 'net worth' is considered as the money that the company could plan to spend in the Bjelovar Sub-Basin, i.e. 50 million USD, expecting to gain at least such a profit for all potential discoveries. Consequently, r is 10^-1.

Our case study calculations gave us 2.52 million USD as EMV (see above) and U(x) 7.57 million USD. The next step was to calculate the value of expected units or EU = 0.85 using the simple expression \[U(x) = Pos \times (1 - Pos) \] The value of EMV is risk money decreased for selected-exponential utility function shape (here 1.81). The last step was to calculate a certainty equivalent (CE) by risk utility function or risk tolerance coefficient. Certainty equivalent is the maximal amount of money that a company is willing to invest in potential discovery.

\[CE(inS) = r \times \ln \left(1 - \frac{EU}{r} \right) \]

The value of CE is 0.85, i.e. 850,000 USD. This is the risk-free amount, according to Cozzolino [2, 3] and Rose [10, 11]. From that calculation it may be concluded that a company with a 50 million USD &P budget has good reasons, upon exploring the proposed prospect with a geological probability 28.5% (Paleozoic-Middle Miocene play) at a cost of 850,000 USD, to expect a potential profit of 2.42 million USD (RAV = 35.1%).

Conclusion

This is currently the most comprehensive work to include regional geological analysis, geological risk calculation, economical analysis of drilling costs and expected value of potential discovery, and eventually investment risk related to the Croatian part of the Pannonian Basin System, and it is readily applicable to the Bjelovar Sub-Basin. The following conclusions can be drawn:

- Based on geological settings of the Bjelovar Sub-Basin it could be conjectured that there are still relatively small, but economically viable, potential discoveries present.
- The proposed geological database represents the source of data describing each play or prospect in the Bjelovar Sub-Basin. The five probability classes are selected as follows: 1.00 (proven geological event), 0.75 (fairly reliable predicted), 0.50 (fairly reliable predicted), 0.25 (unpredictable geological event), and 0.05 (missing geological event).
- The Bjelovar Sub-Basin is considered as a mature petroleum province. Due to this the analysis included the risk-averse approach, i.e. exponential utility function.
- The utility function was applied to calculate risk neutral dollars which a hypothetical company would be willing to spend in the exploration of new discoveries (size 2x10^6 m^3 of oil equivalent and POS 28.48%) consistent with an expected monetary value (EMV) of 2.42 million USD.
- The amount of 850,000 risk-neutral USD is estimated as the investment limit for a company with a 50 million USD budget, and accompanied by RAV of 35%.
- Most of the methodology utilized in this article is well known, and can justifiably be applied to provide a clear evaluation of the geological and economical risk in the Bjelovar Sub-Basin (Northern Croatia), where a database was collected.
- The relatively small RAV showed that in smaller mature petroleum provinces such as the Bjelovar Sub-Basin, the exploration for the remaining economical reserves demands the joint-venturing of two or more companies with shared total risk.
- It could be relatively easily modified using additional geological data and applied in similar petroleum provinces in the Croatian part of the Pannonian Basin System.

We would like to thank Dr. Ulrich Schmitz (LO&G Consultants), who substantially helped with critical comments and suggestions regarding the overall concise presentation of our work.

Literature