11th WORKSHOP ON OPTIMIZATION AND INVERSE PROBLEMS IN ELECTROMAGNETISM

PROCEEDINGS

14-18 September 2010, Sofia, Bulgaria

TECHNICAL UNIVERSITY OF SOFIA
Dear Authors and Participants,

it is our great honor and pleasure to welcome you to Sofia, where OIPE 2010, 11th International Workshop on Optimization and Inverse Problems in Electromagnetism will be held from 14 to 18 September 2010.

The OIPE Workshops has gained a high reputation since its establishment more than twenty years ago. We are glad that for the first time the workshop is coming to Bulgaria and to the Balkan region. We do hope that widening the geographical area of OIPE workshop will contribute to its success and development.

The common denominators of all OIPE workshops, Optimization and Inverse Problems, are cross sectional topics with high relevance in many fields of engineering and other sciences. Thus, the OIPE workshops are very multidisciplinary with respect to the covered topics and the contributing scientists. This is in contrast to many other workshops or conferences, which concentrate on specific applications or subfields of science. It not only makes the OIPE series unique but also brings together and promotes interaction between scientists from various backgrounds and from all around the world. We beleive that OIPE 2010 will substantially contribute to the exchange of new ideas and new views in this field.

International PhD Seminar is also a part of OIPE 2010. The seminar is entitled “Computational electromagnetics and optimization in electrical engineering” and is held just before OIPE 2010. The seminar features invited lectures by leading scientists and presentations by PhD students. The financial support from DAAD allowed also participants in the seminar to be able to attend the OIPE 2010 workshop. Thus the young people will be able to participate in the sessions of OIPE 2010 and to get in contact with leading experts in the area of optimization and inverse problems.
For this year’s edition of OIPE Workshop we received 83 digests in total, of which 72 were accepted for presentation. Three keynote speakers were also invited to present their recent achievements.

We would like to express our sincere appreciation of the hard work done by the International Editorial Board. We have also to thank the Local Steering Committee for their efforts for the preparation of OIPE 2010.

We wish you a successful workshop and a pleasant stay in Sofia!

Sofia, September 2010

Prof. Ivan Yatchev
OIPE 2010 Chairman

Prof. Iliana Marinova
OIPE 2010 Secretary
Conference Organization

Conference Chairman  Ivan Yatchev, Technical University of Sofia, Bulgaria
Conference Secretary Iliana Marinova, Technical University of Sofia, Bulgaria

OIPE 2010 International Steering Committee

Hartmut Brauer  Ilmenau University of Technology, Ilmenau, Germany
Pascal Brochet  Ecole Centrale de Lille, Lille, France
Jean-Louis Coulomb  Grenoble Electrical Engineering Lab., Grenoble, France
Paolo Di Barba  University of Pavia, Pavia, Italy
Alessandro Formisano  Second University of Naples, Naples, Italy
Laurent Gerbaud  Grenoble Electrical Engineering Lab., Grenoble, France
Ales Gottvald  Academy of Science, Brno, Czech Republic
Jens Haueisen  Ilmenau University of Technology, Ilmenau, Germany
Laurent Krähenbühl  National Center for Scientific Research, Lyon, France
David Lowther  McGill University, Montreal, Canada
Christian Magele  Technical University, Graz, Austria
Iliana Marinova  Technical University of Sofia, Sofia, Bulgaria
Raffaele Martone (Chairman)  Second University of Naples, Naples, Italy
Kaisa Miettinen  University of Jyvaskyla, Jyvaskyla, Finland
Maurizio Repetto  Turin Polytechnic, Turin, Italy
Marek Rudnicki  Technical University of Lodz, Lodz, Poland
Bruno Sareni  Institut National Polytechnique, Toulouse, France
Antonio Savini  University of Pavia, Pavia, Italy
Slawomir Wiak  Technical University, Lodz, Poland
Frederic Wurtz  Grenoble Electrical Engineering Lab., Grenoble, France
Ivan Yatchev  Technical University of Sofia, Sofia, Bulgaria

OIPE 2010 Local Steering Committee

Kostadin Brandisky, TU Sofia
Peter Dineff, TU Sofia
Vasil Gospodinov, TU Sofia
Stefcho Guninski, TU Sofia
Krastio Hinov, TU Sofia
Iliana Iatcheva, TU Sofia
Maria Kaneva, TU Sofia
Nikola Kaloyanov, TU Sofia
Vladimir Lazarov, TU Sofia
Angel Pachamanov, TU Sofia
Petko Petkov, TU Sofia
Rumena Stancheva, TU Sofia
Georgy Todorov, TU Sofia
Raina Tzeneva, TU Sofia
Hristo Vassilev, TU Sofia
OIEPE 2010 INTERNATIONAL EDITORIAL BOARD

ALEKSIC, Slavoljub
BRANDISKY, Kostadin
BRAUER, Hartmut
CIVIDJIAN, Grigore
COULOMB, Jean-Louis
DI BARBA, Paolo
DI RENZO, Luca
DULAR, Patrick
ERTAN, Bulent
FORMISANO, Alessandro
GERBAUD, Laurent
GOTTVALD, Ales
GRATKOWSKI, Stanislaw
HAUEISEN, Jens
HOFFMANN, Armin
HOT, Kemal
IATCHEVA, Ilona
IDA, Nathan
KALTENBACHER, Manfred
KRAWCZYK, Andrzej
KRÄHENBÜHL, Laurent
LI, Pu
LOWTHER, David
MAGELE, Christian
MARINOVA, Iliana
MARKLEIN, Rene
MARTONE, Raffaele
PAVO, Jozsef
PICHON, Lionel
POPA, Ioan
POTTHAST, Roland
REPETTO, Maurizio
RUDNICKI, Marek
RUSSENSCHUCK, Stephan
SARENI, Bruno
STANCHEVA, Rumena
STARZYŃSKI, Jacek
STEFANI, Frank
TAKAHASHI, Norio
TSIBOUKIS, Theodoros
WATANABE, Kota
WIAK, Slawomir
WURTZ, Frederic
YATCHEV, Ivan
ZIOLKOWSKI, Marek

Nis, Serbia
Sofia, Bulgaria
Ilmenau, Germany
Craiova, Romania
Grenoble, France
Pavia, Italy
Milan, Italy
Liège, Belgium
Ankara, Turkey
Naples, Italy
Grenoble, France
Brno, Czech Republic
Grenoble, France
Ilmenau, Germany
Zagreb, Croatia
Sofia, Bulgaria
Akron, USA
Klagenfurt, Austria
Czestochowa, Poland
Lyon, France
Ilmenau, Germany
Montreal, Canada
Graz, Austria
Sofia, Bulgaria
Kassel, Germany
Naples, Italy
Budapest, Hungary
Paris, France
Craiova, Romania
Goettingen, Germany
Torino, Italy
Lodz, Poland
Geneva, Switzerland
Toulouse, France
Sofia, Bulgaria
Warsaw, Poland
Dresden-Rossendorf, Germany
Okayama, Japan
Thessaloniki, Greece
Sapporo, Japan
Lodz, Poland
Grenoble, France
Sofia, Bulgaria
Ilmenau, Germany
<table>
<thead>
<tr>
<th>Day</th>
<th>Hour</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tuesday</strong></td>
<td>16:30 - 19:00</td>
<td>Registration</td>
</tr>
<tr>
<td>14 September</td>
<td>19:00 - 21:00</td>
<td>Welcome reception</td>
</tr>
<tr>
<td><strong>Wednesday</strong></td>
<td>9:00 - 9:30</td>
<td>Opening Session</td>
</tr>
<tr>
<td>15 September</td>
<td>9:30 - 11:00</td>
<td>Oral Session O1</td>
</tr>
<tr>
<td></td>
<td>11:00 - 11:30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td></td>
<td>11:30 - 13:00</td>
<td>Oral Session O2</td>
</tr>
<tr>
<td></td>
<td>13:00 - 14:30</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>14:30 - 16:00</td>
<td>Oral Session O3</td>
</tr>
<tr>
<td></td>
<td>16:00 - 16:30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td></td>
<td>16:30 - 18:00</td>
<td>Poster Session P1</td>
</tr>
<tr>
<td></td>
<td>18:30 - 20:00</td>
<td>Dinner</td>
</tr>
<tr>
<td><strong>Thursday</strong></td>
<td>9:00 - 10:30</td>
<td>Oral Session O4</td>
</tr>
<tr>
<td>16 September</td>
<td>10:30 - 11:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td></td>
<td>11:00 - 12:30</td>
<td>Oral Session O5</td>
</tr>
<tr>
<td></td>
<td>12:30 - 14:00</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>14:00 - 15:30</td>
<td>Poster Session P2</td>
</tr>
<tr>
<td></td>
<td>15:30 - 16:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td></td>
<td>16:00 - 18:30</td>
<td>ISC Meeting</td>
</tr>
<tr>
<td></td>
<td>18:30 - 20:00</td>
<td>Dinner</td>
</tr>
<tr>
<td><strong>Friday</strong></td>
<td>9:00 - 10:30</td>
<td>Oral Session O6</td>
</tr>
<tr>
<td>17 September</td>
<td>10:30 - 11:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td></td>
<td>11:00 - 12:30</td>
<td>Oral Session O7</td>
</tr>
<tr>
<td></td>
<td>12:30 - 14:00</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>14:00 - 15:00</td>
<td>Oral Session O8</td>
</tr>
<tr>
<td></td>
<td>15:00 - 15:30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td></td>
<td>15:30 - 16:00</td>
<td>Closing Session</td>
</tr>
<tr>
<td></td>
<td>19:00 - 23:00</td>
<td>Gala Dinner</td>
</tr>
<tr>
<td><strong>Saturday</strong></td>
<td>9:00 - 17:00</td>
<td>Excursion to Rila Monastery</td>
</tr>
</tbody>
</table>
OPTIMIZED TRANSIENT ANALYSIS USING GB-BEM

Sinisa ANTONIJEVIC, Vicko DORIC and Dragan POLJAK

University of Split, Department of Electronics, 21000 Split, Croatia,
E-mail: santon@fesb.hr

Abstract. Transient analysis of the thin wire structures via indirect scheme of the Galerking - Bubnov Boundary Element Method (GB-BEM) is performed using simple optimization techniques for frequency to time domain transformation. The common method of uniform frequency domain sampling combined with Fast Fourier Transform (FFT) is replaced by adaptive frequency domain sampling, combined with simple approximate analytical inverse Fourier transform. The present adaptive sampling method is especially effective for highly resonant geometries where order of magnitude improvements in calculation time can be achieved, when compared with simple uniform sampling. For geometries where high number of frequency samples would be required in inverse FFT, simple approximate analytical inverse Fourier transform, using much lower number of samples obtained during adaptive sampling step, is used thus further improving the overall computational efficiency of the algorithm.

Keywords: adaptive sampling, Fourier transform, GB-BEM, thin wires, time-domain analysis

INTRODUCTION

While indirect time-domain methods are typically much easier to implement then direct time-domain methods, they do require calculation to be repeated sufficient number of times in order to obtain adequately accurate results. For geometries witch impulse response spans across larger frequency spectrum, or that are highly resonant, indirect methods are significantly less efficient then direct time domain methods, which require only one calculation, irrespective of the observed geometry. However, since frequency domain methods, which form the basis of indirect time domain calculation, typically don't suffer from stability issues (one of the most serious problems for the direct time-domain methods), and are easier to formulate and implement, they are generally much often used then direct time-domain methods [3]- [5]. By using the well tested frequency domain code (in this case the Thin Wire Numerical Solver (TWiNS) [6]) as a basis for indirect time-domain analysis in combination with FFT, a reliable benchmark time-domain results can be achieved [1].

However, the efficiency concerns can lead to considerable problems for geometries where a larger number of frequency-domain results are to be calculated. In a straightforward application of the indirect method, the number of data samples used in FFT is the same as number of frequencies that are calculated via TWiNS, i.e. the number of samples used to construct transfer function of the system The approximate transfer function obtained this way can then be resampled for use in inverse FFT by interpolation. If appropriate adaptive sampling is used in selection of the frequencies to be calculated, the final time-domain results can have only marginal accuracy decrease, while at the same time keeping the overall calculation time significantly less then with simple uniform sampling [2].

Taking the basic idea a step further, the usage of high enough number of points in FFT can be circumvented altogether and the unknown current in the frequency domain can be approximated as a series of known functions spanned by the points determined during the adaptive sampling step. This way, a significantly smaller number of samples are used to calculate the time domain inverse of the frequency domain current by subjecting the approximate function to the analytical inverse Fourier transform. This method also has the additional advantage that the complete inversion doesn't have to be repeated for the each iteration, but only for additional segments determined by the adaptive sampling algorithm.

INDIRECT TIME-DOMAIN ANALYSIS USING GB-BEM

The procedure of calculating time-domain results via indirect method based on GB-BEM can be divided in several steps. First, the transfer function of the analyzed geometry \( H(f) \) is obtained by executing TWiNS code sufficient number of times so that \( H(f) \) curve is accurate enough. If excitation with magnitude 1 and phase 0 is used for all frequencies, the obtained frequency domain current results represent the impulse response of the system. Then, time-dependant voltage source \( V(t) \) is sampled and FFT is performed, resulting in a frequency spectrum of the excitation \( V(f) \). Next, excitation frequency spectrum and structure transfer function are multiplied in the frequency domain thus obtaining frequency-domain current distribution on the observation point at the analyzed structure \( I(f) \). Finally, \( I(t) \) is calculated from \( I(f) \) via FFT.

Straightforward way to perform time-domain analysis via some frequency-domain method, such as GB-BEM, is to simply calculate set of values at uniformly distributed frequencies up to some maximum frequency. However, for geometries characterized by highly pronounced narrow peaks in a transfer function this simple
method requires very high number of samples so that the narrow peaks are sampled with sufficient accuracy, thus leading to the obvious degradation in computational efficiency.

**EXPANSION WITH ADAPTIVE SAMPLING ALGORITHM**

The basic idea is to use higher sampling density only in areas of transfer function that have higher impact on accuracy of final results, thus reducing overall number of frequency domain samples that are to be calculated. The uniform frequency domain sampling is used only as a initial step, forming an initial set of frequencies \( F_0 \). Executing frequency domain code [6] on each of the frequencies in set \( F_0 \) yields a respective result vector \( H_0 \). Based on these values, a new set of frequencies \( F^N \) is estimated, and the calculation is repeated again, yielding a new result vector \( H_m \). The frequencies in \( F^N \) are chosen to have the greatest impact on the accuracy of the results. By repeating the process, the results are gradually refined with each new iteration. The core of the algorithm is determining the set of frequencies in \( F^N \). During this step, each of the \( N_{m-1} \) pairs \((f_i, h_i)\), from \( F_{m-1} \), \( H_{m-1} \) are assigned error estimate value \( e_i \), thus forming interpolation error estimation vector \( E \):

\[
E = \{e_1, e_2, \ldots, e_{N_{m-1}}\}.
\]

The error estimation for i-th member of the previous iteration result vector \( H_{m-1} \) is

\[
e_i = \left| h_i - \frac{f_{i+1} - f_i}{f_i - f_{i-1}} \left[ h_{i-1} - h_{i+1} \right] \right|.
\]

After the errors for each pair \((f_i, h_i)\) are estimated, only frequencies with estimated error \( e_i \) greater than some minimum value \( e_{\text{min}} \) are taken in consideration in forming a set of new frequencies \( F^N \). The value of \( e_{\text{min}} \) can be determined using standard deviation of all estimated errors.

**INVERSE FOURIER TRANSFORM OF THE APPROXIMATE FUNCTION**

Instead of using inverse FFT and resampling the transfer function to obtain time domain results, a simple method, that requires only samples acquired during adaptive sampling estimation in previous step, can be used. The basic idea is to use simple linear interpolation to approximate the segment of the unknown \( I(f) \) function as analytical function fully described by the two neighboring samples. This segment is subjected to the analytical inverse Fourier transform, resulting in a simple closed-form expression. The sum of these expressions for all the segments for a given time instant \( t \) represent the unknown transient current value \( I(t) \). In following iteration, only values for newly added segments have to be evaluated to obtain \( I(t) \).

**CONCLUSIONS**

An expansion of the indirect time-domain method based on TWiNS with the simple adaptive sampling algorithm is presented in this work. This expansion significantly improves the computation time of the overall method in case a highly resonant structure is analyzed. Adaptive sampling algorithm uses recursive method where transfer function curve is gradually refined with each iteration, based on a simple heuristic error estimate function. The results indicate up to an order of magnitude improvements in total computation time.

Further improvements in the computational efficiency are obtained by avoiding the repetitive usage of FFT with potentially large number of samples in the each iteration. Instead, a simple analytical approximation based on the small number of non-uniformly spaced frequency domain samples to obtain the time domain response of the geometry is used.

**REFERENCES**

## AUTHORS’ INDEX

### A
- ABDALLH Ahmed 15
- ALEKSIC Slavoljub 21,65
- ÁLVAREZ Diego 19
- ANDREI Iulian 90
- ANTONIJEVIC Sinisa 130
- AMBRISI Angelo 33
- AMDOUNI Imen 59
- AMRAOUI Lilia El 59
- AYASSO Hacheme 11
- AYED Ramzi Ben 80,82

### B
- BAEK Myung Ki 112
- BANASIAK Robert 63
- BAUMGARTEN Daniel 92,108
- BENREJEB Mohamed 59
- BERBEECA Alexandru 72,82,102
- BLOME Mark 151
- BOLLMANN Steffen 92
- BONISOLI Elvio 98
- BRANDISKY Kostadin 63
- BRAUER Hartmut 41
- BRISSET Stéphane 72,80,82,153
- BROCHET Pascal 59,72,102,136
- BROSCAREANU Dumitru 23
- BRU Eric 43
- BRUN P. 55

### C
- CACIULAN Emanuela
- CANOVA Aldo 96
- CANTEGREL Martin 72,153
- CAMINITI Ida 17
- CARAYON J.-P. 143
- CARCANGIU Sara 67,69
- CARPES Walter 130,132
- CAUFFET Gilles 13,53
- CHADEC B. 13
- CHAI Jangbom 112
- CHOI Yoon Seok 112
- CIUPRINA Gabriela 5
- CIVIDJIAN Grigore 23
- COCO Salvatore 47
- COULOMB Jean-Louis 13,55,139
- CREBIER Jean-Christophe 55,57,145
- CREVECOEUR Guillaume 15,31,37
- CVETKOVIC Zlata 100

### D
- DAN Daniel 90
- DE ANDRADE André 43
- DEDULLE JM. 53
- DELINCHANT Benoit 139
- DI BARBA Paolo 71,76,104
- DI RIENZO Luca 116
- DILETTOSO Emanuele 67
- DINH Christoph 92
- DOLAPCHIEV Ivaylo 63
- DORIC Vicko 130
- DORN Oliver 19
- DU PELOUX Bertrand 139
- DUCHENE Bernard 11
- DUPRÉ Luc 15,31,37

### E
- EFENDIEV Rakib 128
- EICHARDT Roland 92,108

### F
- FANNI Alessandra 6,69
- FERRAIOLI Fabrizio 17
- FOGLIA Guillaume 49,51
- FORMISANO Alessandro 17,33
- FRIEDRICH Guy 84
- FRESCHI Fabio 96,98

### G
- GADJEVA Elissaveta 147
- GADZHIEV Nikolay 147
- GERBAUD Laurent 45,55,57,143,145
- GIACCONI Luca 96,98
- GILLON Frédéric 59,72,82,102,153
- GONG Jinlin 102
- GRATKOWSKI Stanislaw 27,29
- GRECONICI Marian 141
- GUEORGIEV Vultchan 149
- GUERRISI Alessandra 96
- GUIBERT Arnaud 13

### H
- HADJSAID Nouredine 49
- HAUEISEN Jens 92,108
- HINOV Krastyo 149
- HORVÁTH Miklós 120

### I
- IATCHEVA Ilona 86,110
- IČIć Saša 21
- IOAN Daniel 5
- IRISHINA Natalia 19

### J
- JAAFAR Amine 61,106
- JACOMINO Mireille 155
- JAVOR Vesna 88

### K
- KIM Enoch 112
- KIM Mina 112
- KIM Young Sun 39,112
- KOEHLER Ulrich 41
- KREUTZBRUCK Marc 151
- KUNOV Georgi 110

### L
- LAHEY Domenico 7,78
- LACOMBE J. 53
- LANDO Jean-Louis 124
- LANGE Jean-François 45
- LATTARULO Francesco 122
- LAUDANI Antonino 47
- LAZAR Alexandru 5
- LEMOINE Didier 84
- Li Dongwei 116
- LI Min 25
- LIAN Li-Ting 126
- LIU Sheng-Dao 126
- LOWTHER David 25

### M
- MADESCU Gheorghe 141
- MARINOVA Iliana 35,118
- MARTONE Raffaele 17,33
- MAGELE Christian 1
- MAMELI Marco 78
- MATEEV Valentin 35,114,118
- METODEIEV Mario 110
- MOGNASCHI Maria Evelina 104
- MOHAMMAD-DJAFARI Ali 11
- MONTISCI Augusto 67,69
- MOSCOSO Miguel 19
- MLADENOVIC Ana 100
- MULCKHUUYSE Wouter 7

### N
- NGUYEN Trung Thanh 9
- NGUYEN XUAN Hoa 55,57,145
- NGUYEN-HUU Hieu 45,124
<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALKA Ryszard</td>
<td>104</td>
</tr>
<tr>
<td>PARK II Han</td>
<td>39,112</td>
</tr>
<tr>
<td>PARODI Mauro</td>
<td>74</td>
</tr>
<tr>
<td>PERIC Mirjana</td>
<td>65,100</td>
</tr>
<tr>
<td>PETKOVIĆ Bojana</td>
<td>108</td>
</tr>
<tr>
<td>PHAM QUANG Phuong</td>
<td>139</td>
</tr>
<tr>
<td>PLATAS J.</td>
<td>53</td>
</tr>
<tr>
<td>PLOIX Stephane</td>
<td>155</td>
</tr>
<tr>
<td>POLJAK Dragan</td>
<td>130</td>
</tr>
<tr>
<td>PULCINI Giuseppe</td>
<td>3</td>
</tr>
<tr>
<td>PUTEK Piotr</td>
<td>37</td>
</tr>
<tr>
<td>RAIČEVIĆ Nebojša</td>
<td>21</td>
</tr>
<tr>
<td>RANNOU Corinne</td>
<td>13</td>
</tr>
<tr>
<td>REIMUND Verena</td>
<td>151</td>
</tr>
<tr>
<td>REPETTO Maurizio</td>
<td>96,98</td>
</tr>
<tr>
<td>RETIERE Nicolas</td>
<td>124</td>
</tr>
<tr>
<td>RIGANTI FULGINEI</td>
<td>3,47,74</td>
</tr>
<tr>
<td>ROBOAM Xavier</td>
<td>43,61,106,124</td>
</tr>
<tr>
<td>ROMANO Daniele</td>
<td>78</td>
</tr>
<tr>
<td>ROUDET James</td>
<td>45</td>
</tr>
<tr>
<td>ROUGER Nicolas</td>
<td>57,145</td>
</tr>
<tr>
<td>RUDNICKI Marek</td>
<td>149</td>
</tr>
<tr>
<td>SAADAOU Ramzi</td>
<td>59</td>
</tr>
<tr>
<td>SALVINI Alessandro</td>
<td>3,47,74</td>
</tr>
<tr>
<td>SANKOWSKI Dominik</td>
<td>63</td>
</tr>
<tr>
<td>SANTOS Guilherme</td>
<td>130,132</td>
</tr>
<tr>
<td>SARENI Bruno</td>
<td>43,61,106,124</td>
</tr>
<tr>
<td>SAUVAGE E.</td>
<td>53</td>
</tr>
<tr>
<td>SAVINI Antonio</td>
<td>76,104</td>
</tr>
<tr>
<td>SCHANEN J.-L.</td>
<td>143</td>
</tr>
<tr>
<td>SESANGA N’TSHUJKA</td>
<td>51</td>
</tr>
<tr>
<td>SINI Mourad</td>
<td>9</td>
</tr>
<tr>
<td>SLODIČKA Marian</td>
<td>37</td>
</tr>
<tr>
<td>STANCHEVA Rumena</td>
<td>86,110</td>
</tr>
<tr>
<td>STOJANOVIĆ Vidosav</td>
<td>94</td>
</tr>
<tr>
<td>SZYMANIK Barbara</td>
<td>29</td>
</tr>
<tr>
<td>TASIC Dragan</td>
<td>65</td>
</tr>
<tr>
<td>TORNINCASA Stefano</td>
<td>98</td>
</tr>
<tr>
<td>TOURE B.</td>
<td>143</td>
</tr>
<tr>
<td>TRAHMS Lutz</td>
<td>108</td>
</tr>
<tr>
<td>TRAN Duc Hoan</td>
<td>43</td>
</tr>
<tr>
<td>USAI Mariangela</td>
<td>69</td>
</tr>
<tr>
<td>VAN KEER Roger</td>
<td>37</td>
</tr>
<tr>
<td>VESA Daniela</td>
<td>141</td>
</tr>
<tr>
<td>VIVIER Stephane</td>
<td>84</td>
</tr>
<tr>
<td>WANG Jianhua</td>
<td>116</td>
</tr>
<tr>
<td>WARKOZEK Ghaith</td>
<td>155</td>
</tr>
<tr>
<td>WIELE Ben Van de</td>
<td>37</td>
</tr>
<tr>
<td>WIEKSORST Frank</td>
<td>108</td>
</tr>
<tr>
<td>WURTZ Frédéric</td>
<td>49,51,124,155</td>
</tr>
<tr>
<td>XIAO Chang-Han</td>
<td>126</td>
</tr>
<tr>
<td>YANG Ming-Ming</td>
<td>126</td>
</tr>
<tr>
<td>YATCHEV Ivan</td>
<td>149</td>
</tr>
<tr>
<td>ZHANG Zichi</td>
<td>116</td>
</tr>
<tr>
<td>ZHOU Guo-Hua</td>
<td>126</td>
</tr>
<tr>
<td>ZIOLKOWSKI Marek</td>
<td>41</td>
</tr>
<tr>
<td>ZIOLKOWSKI Marcin</td>
<td>27</td>
</tr>
<tr>
<td>ŽIVALJEVIĆ Dragana</td>
<td>94</td>
</tr>
</tbody>
</table>