Proceedings of the 2nd International Conference on Road and Rail Infrastructure – CETRA 2012
7–9 May 2012, Dubrovnik, Croatia

<table>
<thead>
<tr>
<th>KEYNOTE LECTURES</th>
<th>RAIL TRACK STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUCATION</td>
<td>INNOVATION AND NEW TECHNOLOGY</td>
</tr>
<tr>
<td>TRAFFIC PLANNING AND MODELLING</td>
<td>ENVIRONMENTAL PROTECTION</td>
</tr>
<tr>
<td>INFRASTRUCTURE PROJECTS</td>
<td>GEOTECHNICS</td>
</tr>
<tr>
<td>INFRASTRUCTURE MANAGEMENT</td>
<td>INTEGRATED TIMETABLES</td>
</tr>
<tr>
<td>ROAD INFRASTRUCTURE PLANNING</td>
<td>URBAN TRANSPORT PLANNING AND MODELLING</td>
</tr>
<tr>
<td>ROAD PAVEMENT</td>
<td>URBAN TRANSPORT INFRASTRUCTURE</td>
</tr>
<tr>
<td>ROAD MAINTENANCE</td>
<td>VEHICLES</td>
</tr>
<tr>
<td>STRUCTURES AND STRUCTURAL MONITORING</td>
<td>TRAFFIC SAFETY</td>
</tr>
<tr>
<td>RAIL INFRASTRUCTURE PLANNING</td>
<td></td>
</tr>
</tbody>
</table>
A CIP catalogue record for this e–book is available from the National and University Library in Zagreb under 805372

Although all care was taken to ensure the integrity and quality of the publication and the information herein, no responsibility is assumed by the publisher, the editor and authors for any damages to property or persons as a result of operation or use of this publication or use the information’s, instructions or ideas contained in the material herein.

The papers published in the Proceedings express the opinion of the authors, who also are responsible for their content. Reproduction or transmission of full papers is allowed only with written permission of the Publisher. Short parts may be reproduced only with proper quotation of the source.
ORGANISATION

CHAIRMEN

Prof. Željko Korlaet, University of Zagreb, Faculty of Civil Engineering
Prof. Stjepan Lakušić, University of Zagreb, Faculty of Civil Engineering

ORGANIZING COMMITTEE

Prof. Stjepan Lakušić
Prof. Željko Korlaet
Prof. Vesna Dragčević
Prof. Tatjana Rukavina
Maja Ahac
Ivo Haladin
Saša Ahac
Ivica Stančerić
Josipa Domitrović

All members of CETRA 2012 Conference Organizing Committee are professors and assistants of the Department of Transportation, Faculty of Civil Engineering at University of Zagreb.

INTERNATIONAL ACADEMIC SCIENTIFIC COMMITTEE

Prof. Ronald Blab, Vienna University of Technology, Austria
Prof. Vesna Dragčević, University of Zagreb, Croatia
Prof. Nenad Gucunski, Rutgers University, USA
Prof. Željko Korlaet, University of Zagreb, Croatia
Prof. Zoran Krakutovski, University Sts. Cyril and Methodius, Rep. of Macedonia
Prof. Stjepan Lakušić, University of Zagreb, Croatia
Prof. Dirk Lauwers, Ghent University, Belgium
Prof. Giovanni Longo, University of Trieste, Italy
Prof. Janusz Madejski, Silesian University of Technology, Poland
Prof. Jan Mandula, Technical University of Kosice, Slovakia
Prof. Nencho Nenov, University of Transport in Sofia, Bulgaria
Prof. Athanassios Nikolaides, Aristotle University of Thessaloniki, Greece
Prof. Otto Plašek, Brno University of Technology, Czech Republic
Prof. Christos Pyrgidis, Aristotle University of Thessaloniki, Greece
Prof. Carmen Racanel, Technical University of Bucharest, Romania
Prof. Stefano Ricci, University of Rome, Italy
Prof. Tatjana Rukavina, University of Zagreb, Croatia
Prof. Mirjana Tomičić–Torlaković, University of Belgrade, Serbia
Prof. Brigita Salaiova, Technical University of Kosice, Slovakia
Prof. Peter Veit, Graz University of Technology, Austria
Prof. Marijan Žura, University of Ljubljana, Slovenia
FOREWORD

The 2nd International Conference on Road and Rail Infrastructure – CETRA 2012 was organized by the University of Zagreb – Faculty of Civil Engineering, Department of Transportation. The Conference is held in Dubrovnik, Croatia. Dubrovnik is the “pearl of the Adriatic coast” and well known phrase related to it states “Those who seek paradise on Earth should come to Dubrovnik and see Dubrovnik”. The First International Conference on Road and Rail Infrastructure – CETRA 2010 is held in Opatija, Croatia. Great interest of participants in topics from the field of road and rail infrastructure during the conference CETRA 2010 in Opatija, where 140 presentations of papers from 29 countries took place, confirmed the soundness of Department for Transportation Engineering’s decision on organizing such international event. Positive comments of the participants after the past Conference motivated the Department for Transportation Engineering, Faculty of Civil Engineering at University of Zagreb to continue the organization of such an event in the upcoming years (on a biennial basis).

In the year 2012, 2nd International Conference on Road and Rail Infrastructure – CETRA 2012 has been organized, with the intention of bringing together scientists and experts in the fields of road and railway engineering, giving them another opportunity to present the results of their researches, findings and innovations. Road and railway infrastructure is closely related, but scientific and professional gatherings covering both fields simultaneously are rarely being organized. The growing volume of traffic, both passenger and cargo, demands not only the development of the vehicles themselves (increasing their cargo capacity and speed), but also the timely construction and regular maintenance of infrastructure. It is exactly for this reason that the 2nd International Conference on Road and Rail Infrastructure – CETRA 2012 covers many areas: traffic planning & modelling, infrastructure projects, design of road and rail substructure and superstructure, construction and maintenance process, structural monitoring, urban transport infrastructures, application of recycled materials, innovation and new technology, environmental protection – noise and vibrations and, above all, education, which today has an increasingly important role.

This second Conference CETRA 2012 attracted a large number of papers from 39 countries and 52 Universities. More than 142 papers were presented at the Conference and are contained in these proceedings Road and Rail Infrastructure II. The papers are divided into the following sections: Education, Traffic planning and modelling, Infrastructure projects, Infrastructure management, Road infrastructure planning, Road pavement, Road maintenance, Structures and structural monitoring, Innovation and new technologies, Design of road and railways, Rail track structure, Environmental, Geotechnics, Integrated timetables, Urban transport planning and modelling, Urban transport infrastructure, Vehicles, Traffic safety.

The organizers of the Conference express their thanks to all Businesses and Institutions who helped in organization of this Conference. The Editor is grateful to all the authors for the excellent papers contributed to this book and wishes to thank the members of the International Academic Scientific Committee who participated in the review process. Our gratitude also goes to all the participants for their willingness to come to Dubrovnik and take part in CETRA 2012.

THE EDITOR

Prof. dr. Stjepan Lakušić
May, 2012.
SPONSORS

Under the Auspices of

University of Zagreb
Trg maršala Tita 14, 10000 ZAGREB, Croatia

Ministry of Maritime Affairs, Transport and Infrastructure
Prisavlje 14, 10000 ZAGREB, Croatia

Minister of Science, Education and Sports
Donje Svetice 38, 10000 Zagreb, Croatia

Golden Donors

BENTLEY

GEOBRUGG
www.geobrugg.com

CEMEX
www.cemex.hr
Silver Donor

Department of Transportation Engineering
Faculty of Civil Engineering
University of Zagreb
Kačićeva 26, 10000 Zagreb, Croatia

Bronze Donors

Tensar International
www.tensar-international.com

Chair for Rock Mechanics and Investigation Works
Department of Geotechnical Engineering
Faculty of Civil Engineering,
University of Zagreb
Kačićeva 26, 10000 Zagreb, Croatia

Media Partners

Journal of Croatian Association of Civil Engineers
Berislavićeva 6, 10000 Zagreb, Croatia
www.hsgi.org/gradjevinar · gradjevinar@hsgi.org

Journal of Croatian Railway Engineering Association
Petrinjska 89, 10000 Zagreb, Croatia · hdzi@hznet.hr

Journal for railway operators and suppliers
www.railwaygazette.com · info@railwaygazette.com
CONTENTS

FOREWORD ... 5

KEYNOTE LECTURES

INNOVATION WITHOUT IMPLEMENTATION EQUALS ZERO
Klaus Riessberger ... 19

LIFETIME ENGINEERING FOR ROADS
Laszlo Gaspar .. 25

ENERGY AND ENVIRONMENTAL ASPECTS OF HIGH—SPEED RAIL
Roderick A. Smith, Robert Watson, Jing Zhou .. 35

NECESSITY TO SUPPORT THE FINANCING OF THE ROAD INFRASTRUCTURE
Christophe Nicodème ... 45

1 EDUCATION

RESEARCH ON COMPETENCES OF STUDENTS OF CIVIL ENGINEERING
STUDIES IN THE FIELD OF ROAD CONSTRUCTION
Zlata Dolaček–Alduk, Sanja Dimter .. 59

NEARLY 10 YEARS OF TEACHING RAILWAY SIMULATION AT THE VIENNA UNIVERSITY OF TECHNOLOGY
Katalin Jurecka .. 67

2 TRAFFIC PLANNING AND MODELLING

THE ROLE OF A POLICY MADE ROAD CATEGORISATION FOR SUSTAINABLE ROUTE NAVIGATION UNDER NORMAL AND CONGESTED TRAFFIC CONDITIONS
Koen De Baets .. 75

BEHAVIORAL ANALYSIS OF DEPARTURE TIME DECISION CONSIDERING REDUNDANCY OF RAILROAD NETWORK
Kazuuki Takada, Makoto Fujiu, Shigeki Sugiyama .. 81

TRUCK TRIP GENERATION RATES FOR DIFFERENT TYPES OF FACILITIES IN POLAND
Tomasz Kulpa .. 89

CAPACITY VS. RELIABILITY IN RAILWAYS: A STOCHASTIC MICRO—SIMULATION APPROACH
Giovanni Longo, Giorgio Medeossi .. 97

USING SIMULATION TO ASSESS INFRASTRUCTURE PERFORMANCE IN MULTICRITERIA EVALUATION OF RAILWAY PROJECTS
Giovanni Longo, Giorgio Medeossi, Elio Padoano .. 105

3 INFRASTRUCTURE PROJECTS

SPECIFICITIES OF PROJECT FOR RAILWAY LINE ON CORRIDOR VIII
Zoran Krakutovski, Darko Moslavac, Zlatko Zaﬁrovski ... 115

MODERNIZATION OF RAIL ROUTE 10 – KOSOVO RAILWAYS
Fitim Shala .. 123
4 INFRASTRUCTURE MANAGEMENT

EFFICIENT AND CUSTOMER FRIENDLY LUGGAGE LOCKING
Bernhard Rüger, Hans–Christian Graf, Burkhard Stadlmann ... 133

PUBLIC BUSES ON EMERGENCY LANES – A VERY SPECIAL USE OF A MOTORWAY IN AUSTRIA
Wolfgang Josef Berger ... 141

THE POLISH SCIENTIFIC RESEARCHES ON ELECTRONIC TOLL COLLECTION AREA
Gabriel Nowacki ... 149

THE FIRST EXPERIENCE OF ETC USAGE IN THE SILESIAN REGION
Aleksander Sładkowski, Grzegorz Twardoch ... 155

TRACK ACCESS CHARGE ALGORITHMS IN EU RAILWAYS: A DYNAMIC BENCHMARKING
Francesca Ciuffini, Stefano Ricci, Giulio Rocco Sitongia ... 161

A NEW METHODOLOGY FOR ASSESSING THE PERFORMANCE OF ROAD SURFACE MARKINGS
Francesco Asdrubali, Cinzia Buratti, Elisa Moretti, Francesco D’Alessandro, Samuele Schiavoni 169

A TENTATIVE TOLL MOTORWAY SOLUTION ON DURRES–TIRANA–ELBASAN ROAD CORRIDOR
Faruk Jusuf Kaba ... 177

UNDERSTANDABLE, VISIBLE AND CLEAR INFORMATION TO THE DRIVER — DO WE KNOW HOW TO PROVIDE IT?
Uroš Brumec, Aleš Merkun, Nina Verzolak Hrabar ... 185

5 ROAD INFRASTRUCTURE PLANNING

APPLICATION OF MULTICRITERIA ANALYSIS FOR SELECTION OF ALTERNATIVE IN THE ROAD PROJECTS
Aleksandar Glavinov, Zoran Krakutovski, Slobodan Ognjenovic, Katerina Miltovska–Trendova 195

STRATEGIC TRANSPORT INFRASTRUCTURE IN SOUTH EAST EUROPE: PLANNING EXPERIENCE
AND PERSPECTIVES IN THE CONTEXT OF THE EUROPEAN TRANSPORT POLICY
Marios Miltiadou, Socrates Basbas, George Mintsis, Christos Taxiltaris, Anthi Tsakiropoulou 203

HIGHWAY A8, SECTION ROGOVIĆI–MATULJI, INFLUENCE OF GENERAL PUBLIC ON DESIGN SOLUTIONS
Nebojša Opačić, Tomislav Kraljić .. 213

DECISION MAKING PROCESS ON THE ANTWERP OOSTEWEEL LINK: LESSONS LEARNT
Dirk Lauwers .. 221

6 ROAD PAVEMENT

PAVEMENT WIDENING ON ROAD CURVES
Željko Korlaet, Tomislav Dobrica, Ivica Stančerić .. 229

VERTICAL DYNAMIC LOAD IMPACT ON THE PAVEMENT OF AN URBAN FRONT ENGINE BUS
Pablo Yugo Yoshiura Kubo, Cassio Eduardo Lima De Paiva ... 237

PAVEMENT DESIGN OPTIMISATION CONSIDERING COSTS AND PREVENTIVE INTERVENTIONS
Adelino Ferreira, João Santos ... 243

DEPENDENCY BETWEEN ROAD SURFACE GEOMETRY AND SKID RESISTANCE
Markus Weise, Wolfram Ressel .. 251

RESISTANCE OF ASPHALT COURSES TO PERMANENT DEFORMATIONS IN THE FORM OF RUTS
Miroslav Šimun, Andrea Strineka, Tatjana Rukavina ... 259

APPLICATION OF INFRARED CAMERA FOR QUALITY CONTROL DURING PAVING
Bojan Milovanovic, Josipa Domitrovic, Tatjana Rukavina .. 267

PAVEMENT SURFACES IN URBAN AREAS
Marijana Cuculić, Sergije Babić, Aleksandra Deluka–Tibljaš, Sanja Šurdonja 273

PERMANENT DEFORMATIONS OF ASPHALT MIXTURES FROM PAVEMENT WEARING COURSES
Adrian Burlacu, Carmen Răcănel ... 281

LABORATORY TESTS CONCERNING FATIGUE BEHAVIOR OF ASPHALT MIXTURES
Carmen Răcănel, Adrian Burlacu ... 287
AIRPORT ASPHALT MIXTURES BEHAVIOUR TO FATIGUE AND PERMANENT DEFORMATION
Claudia Petcu, Carmen Răcănel ... 295

THE INFLUENCE OF COMPACTION METHODS ON PROPERTIES OF ASPHALT
MIXTURES: IMPACT COMPACTION VS. SLAB COMPACTION
Mizan Moges, Carsten Karcher .. 301

BINDER MOBILIZATION IN RAP AND ITS CONTRIBUTION TO MIX PERFORMANCE
X. Carbonneau, F. Lubineau, B. Yvinec, Jean Paul Michaut 309

PERMANENT DEFORMATION OF POLYMER MODIFIED BITUMEN
Vesna Ocelić Bulatović, Vesna Rek, Kristina Jurkaš Marković 317

THE COMPARISON BETWEEN WHEEL TRACKING AND TRIAXIAL CYCLIC
COMPRESSION TEST ON DIFFERENT ASPHALT MIXTURES
Nataša Zavrtanik, Roman Bašelj, Mitja Kozamernik, Goran Turk, Marjan Tušar ... 327

CREEP RECOVERY BEHAVIOUR OF BITUMINOUS BINDERS—RELEVANCE
TO PERMANENT DEFORMATION OF ASPHALT PAVEMENTS
Georges A. J. Mturi, Matsopole Nkgapele, Johan O’Connell 335

EVALUATION OF THE EFFECT OF AGGREGATES ANGULARITY ON
THE SURFACE PROPERTIES OF HOT MIX ASPHALT
Amir Onsori, Burak Sengoz, Ali Topal, Cagri Gorkem 343

COMPARISON OF LOW—TEMPERATURE BITUMINOUS MIXTURES SELECTED PROPERTIES
Josef Zak, Jiri Vavricka, Silvia Stefunkova .. 351

RESEARCH OF ASPHALT LAYERS BONDING IN LITHUANIAN PAVEMENT
Audrius Vaitkus, Donatas Čygas, Alfredas Laurinavičius, Viktora Vorobjovas, Rita Kleizienė .. 357

ANALYSIS OF THE FLEXIBLE PAVEMENTS TRANSITIONS USING FINITE ELEMENT METHOD
Cassio Eduardo Lima De Paiva, Leandro Cardoso Trentin 365

COMPARISON OF THE LABORATORY AND FIELD TESTS USED FOR PAVEMENT DESIGN
Lenka Sevelova, Jaroslav Hauser, Alice Kozumlíkova 373

7 ROAD MAINTENANCE

WORLD—CLASS PERFORMANCE BASED MAINTENANCE CONTRACTS — RECENT TRENDS
Pekka Pakkala, Antti Talvitie .. 383

PREDICTION MODEL FOR THE COST OF ROAD REHABILITATION AND RECONSTRUCTION WORKS
Jelena Čirilovic, Nevena Vajdić, Goran Mladenović, Cesar Queiroz 389

PRINCIPLES OF ROAD MAINTENANCE BASED ON PERFORMANCE CRITERIA
Mihai Dicu, Carmen Răcănel, Adrian Burlacu, Ţeţan Marian Lazăr, Claudia Petcu ... 397

EFFECTIVE ROAD MAINTENANCE WORKS PLANNING
Ján Mikolaj, Lubomír Pepucha, Peter Časnocha, Luboš Remek 405

MICRO—SURFACING ON FRENCH HIGHWAYS: RECENT SUCCESSFUL EXPERIENCES
Jean—Etienne Urbain, Mario Medved, Eric Layerle, Ivan Kolaric 413

ON A NOVEL OPTIMISATION MODEL AND SOLUTION METHOD
FOR TACTICAL RAILWAY MAINTENANCE PLANNING
Franziska Heinicke, Axel Simroth, Roberto Tadei 421

SMART MAINTENANCE AND ANALYSIS OF RAILWAY TRANSPORT INFRASTRUCTURE (SMART RAIL)
Kenneth Gavin, Irina Stipanović Oslaković, Marko Vajdić, Goran Puž, Velimir Štorčić ... 429

8 STRUCTURES AND STRUCTURAL MONITORING

EXTENDING LIFE OF CONCRETE BRIDGE DECKS THROUGH EARLY
DETERIORATION DETECTION BY NDE METHODS
Nenad Gucunski, Ali Maher, Hamid Ghasemi .. 439

VIADUCT DESIGNS ON THE SECTION OF THE PAN—EUROPEAN CORRIDOR X IN SOUTH SERBIA
Slavica Vucetic—Abinun .. 447
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL DESIGN FOR WIDENING OF BRIDGE OVER NISAVA RIVER, ON THE RIGHT</td>
<td>455</td>
</tr>
<tr>
<td>CARRIAGEWAY OF THE MOTORWAY E80: NIŠ–DIMITROVGRAD</td>
<td></td>
</tr>
<tr>
<td>Jasmina Damnjanovic, Igor Stefanovic</td>
<td></td>
</tr>
<tr>
<td>SPECIFIC FEATURES OF A5 HIGHWAY—BRIDGE OVER RIVER DRAVA</td>
<td>461</td>
</tr>
<tr>
<td>Vladimir Moser, Sanja Dimter, Ivana Baršič</td>
<td></td>
</tr>
<tr>
<td>ÖBB RAILWAY BRIDGE CONSTRUCTION – CHALLENGES IN USING THE EUROCODES</td>
<td>469</td>
</tr>
<tr>
<td>Thomas Petraschek</td>
<td></td>
</tr>
<tr>
<td>SOME EXPERIENCES IN PRODUCTION OF CONCRETE MIXES DESIGNS</td>
<td>477</td>
</tr>
<tr>
<td>FOR CONSTRUCTION OF CORRIDOR X IN SERBIA</td>
<td></td>
</tr>
<tr>
<td>Zoran Grdić, Gordana Topličić–Ćurčić, Nenad Ristić, Iva Despotović</td>
<td></td>
</tr>
<tr>
<td>DEMAND FOR WAYSIDE TRAIN MONITORING SYSTEMS IN THE NETWORK OF SLOVENIAN RAILWAYS</td>
<td>485</td>
</tr>
<tr>
<td>Andreas Schöbel, Danilo Vek</td>
<td></td>
</tr>
<tr>
<td>THERMIC INTERACTION BETWEEN CONTINUOUS WELDED RAIL AND THE BRIDGE</td>
<td>491</td>
</tr>
<tr>
<td>Otto Plasek, Vlastislav Salajka, Michal Mrozek, Milos Bratka</td>
<td></td>
</tr>
<tr>
<td>EXPERIENCES FROM BRIDGE SCOUR INSPECTIONS BY USING TWO ASSESSMENT METHODS ON 100 RAILWAY BRIDGES</td>
<td>499</td>
</tr>
<tr>
<td>Damir Bekić, Eamon McKeogh, Igor Kerin, Stephen Hand, Gillian Bruton</td>
<td></td>
</tr>
<tr>
<td>9 RAIL INFRASTRUCTURE PLANNING</td>
<td></td>
</tr>
<tr>
<td>THE IMPORTANCE OF INDUSTRIAL TRACK IN RAILWAY INFRASTRUCTURE</td>
<td>509</td>
</tr>
<tr>
<td>Waldemar Alduk, Sanja Dimter, Zlata Dolaček–Alduk</td>
<td></td>
</tr>
<tr>
<td>TOURIST POTENTIAL OF THE INDUSTRIAL RAILWAY NETWORK IN BARANYA</td>
<td>517</td>
</tr>
<tr>
<td>Sanja Lončar–Vicković, Dina Stober, Zlata Dolaček–Alduk</td>
<td></td>
</tr>
<tr>
<td>Stjepan Kralj</td>
<td></td>
</tr>
<tr>
<td>ONE MODEL FOR RAIL INFRASTRUCTURE PROJECTS SELECTION</td>
<td>533</td>
</tr>
<tr>
<td>Dragana Macura, Rešad Nuhodžić, Nebojša Bojović, Nikola Knežević</td>
<td></td>
</tr>
<tr>
<td>APPLICATION OF MULTICRITERIA OPTIMIZATION IN THE RAILWAY LINE DESIGNING AT THE GENERAL PROJECT LEVEL</td>
<td>539</td>
</tr>
<tr>
<td>Ljubo Marković, Ljiljana Milić Marković, Goran Ćirović</td>
<td></td>
</tr>
<tr>
<td>BENEFITS OF A MANAGED ENVIRONMENT ON A LARGE INFRASTRUCTURE PROJECT</td>
<td>547</td>
</tr>
<tr>
<td>Silvano Paolo Gritti, Andrea Amante, Armando Manes</td>
<td></td>
</tr>
<tr>
<td>APPLICATION OF MULTICRITERIA ANALYSIS FOR SELECTION OF ALTERNATIVE IN THE ROAD PROJECTS</td>
<td>557</td>
</tr>
<tr>
<td>Aleksandar Glavinov, Zoran Krakutovski, Slobodan Ognjenovic, Katerina Mitkovska–Trendova</td>
<td></td>
</tr>
<tr>
<td>STRATEGIC TRANSPORT INFRASTRUCTURE IN SOUTH EAST EUROPE: PLANNING EXPERIENCE AND PERSPECTIVES IN THE CONTEXT OF THE EUROPEAN TRANSPORT POLICY</td>
<td>565</td>
</tr>
<tr>
<td>Marios Miltiadou, Socrates Basbas, George Mintsis, Christos Taxiltaris, Anthi Tsakiropoulou</td>
<td></td>
</tr>
<tr>
<td>INFRASTRUCTURAL PRIORITIES OF MODERNIZATION IN RUSSIA</td>
<td>575</td>
</tr>
<tr>
<td>Stanislav Alexandrovich Stepanov</td>
<td></td>
</tr>
<tr>
<td>USING RAILWAY SIMULATION AS A BASIS FOR INFRASTRUCTURE PLANNING</td>
<td>579</td>
</tr>
<tr>
<td>— FOCUSING ON STRUCTURAL CHANGES AT TRAIN STATION EXITS</td>
<td></td>
</tr>
<tr>
<td>Katalin Jurecka</td>
<td></td>
</tr>
<tr>
<td>COMPARATIVE ANALYSIS OF ALTERNATIVE FIXED TRACK TECHNOLOGIES FOR THESSALONIKI AIR–LINK CONNECTION</td>
<td>587</td>
</tr>
<tr>
<td>Panagiotis Papaioannou, Alexandros Deloukas, Ioannis Politis, Manos Vougioukas</td>
<td></td>
</tr>
<tr>
<td>AIRPORT ACCESS INFRASTRUCTURE CRITICAL ISSUE OF THE INTERMODAL CHAIN</td>
<td>595</td>
</tr>
<tr>
<td>Antonín Kazda</td>
<td></td>
</tr>
<tr>
<td>RAILWAY AS THE SOLUTION FOR ROAD CONGESTIONS</td>
<td>601</td>
</tr>
<tr>
<td>Darja Šemrov, Aleš Pavšek, Franc Zemljič</td>
<td></td>
</tr>
</tbody>
</table>
10 RAIL TRACK STRUCTURE

LIGHT RAIL TRACK STRUCTURE COMPARATIVE ANALYSIS
Mirjana Tomičić–Torlaković, Vladan Branković ... 609

TECHNICAL PARAMETERS FOR SELECTION OF ELASTIC RAIL FASTENINGS
Tatjana Simić ... 617

FWD APPLICATION TO RAILWAY TRACK–BED LAYERS CHARACTERIZATION
Simona Fontui, Govind Kamlesh, Francesca De Chiara, Eduardo Fortunato 625

TRANSITION ZONES ON THE RAILWAY TRACK – OVERVIEW
Marko Vajdić, Irina Stipanović Osaković, Stjepan Kralj .. 633

INFLUENCE OF USPȘ ON THE QUALITY OF TRACK GEOMETRY IN TURNOUT
Miroslava Hruzikova, Otto Plasek, Jaroslav Smutny, Richard Svoboda 641

CONTINUOUSLY WELDED RAIL (CWR) TRACK BUCKLING AND SAFETY CONCEPTS
Sanjin Albinović, Mirna Hebib–Albinović .. 649

EFFECTS OF TRAM TRACK DESIGN AND EXPLOITATION PARAMETERS ON GAUGE DIVERGENCE
Stjepan Lakušić, Maja Ahac, Ivo Haladin .. 657

ARC WELDING OF GROOVED RAILS – MANUAL METAL ARC WELDING VERSUS FLUX CORED ARC WELDING
Stjepan Lakušić, Tamara Džambas, Maja Ahac, Ivo Haladin, Ivan Duvnjak 665

11 INNOVATION AND NEW TECHNOLOGY

INNOVATIVE MATERIALS FOR SUSTAINABLE RAILWAY TRACKS – ECOTRACK
Stjepan Lakušić, Dubravka Bjegović, Ana Baričević, Ivo Haladin .. 675

GREEN TRACK – ENVIRONMENTAL PERFORMANCE EVALUATION
FOR ‘GREEN’ TRAMWAY SUPERSTRUCTURE
Paul Steckler, Brigitte Klug, Florian Gasser, Werner Wehr ... 683

ENERGY CONSUMPTION INDUCED BY OPERATION PHASE OF RAILWAYS AND ROAD INFRASTRUCTURES
Alex Coiret, Pierre–Olivier Vandanjon, Romain Bosquet, Agnès Jullien 693

RUCONBAR – GREENING THE MARKET OF NOISE PROTECTION SOLUTIONS
Stjepan Lakušić, Dubravka Bjegović, Ivo Haladin, Ana Baričević, Marijana Serdar 701

FEM DRIVEN DESIGN PROCESS OF INNOVATIVE INTERMODAL TRUCK–RAIL SOLUTION
Wiesław Krason, Tadeusz Niezgoda, Krzysztof Damaziak ... 709

12 ENVIRONMENTAL PROTECTION

DYNAMIC EFFECT OF MOVING LOAD ON ASPHALT PAVEMENT
Jozef Melcer, Gabriela Lajčaková ... 719

THE FEASIBILITY OF PIEZOELECTRIC ENERGY HARVESTING FOR CIVIL APPLICATIONS
Simon C. Bos ... 727

RAIL ROUGHNESS MEASUREMENT AND ANALYSIS IN FRAME OF RAILVEHICLE PASS-BY NOISE MEASUREMENTS
Stjepan Lakušić, Ivo Haladin, Ante Jukić, Nikola Andaši, Petar Piplica 733

LOW NOISE PAVEMENTS: AVAILABLE SOLUTIONS
Jean Paul Michaut .. 739

INTEGRATED NOISE PROTECTION BARRIERS AND SOLAR POWER PLANT ON RIJEKA BYPASS
Boris Huzjan, Sanjin–Velebit Pešut ... 745

ROAD TRAFFIC NOISE MODELING AT ROUNDBOUDTS
Saša Ahac, Vesna Dragčević ... 751

MODELLING THE IMPACT OF TRAFFIC ON QUALITY OF LIFE:
SCENARIO EVALUATION FOR THE CITY OF GENT
Dominique Gillis, Dirk Lauwers, Luc Dekoninck, Dick Botteldooren 757
13 GEOTECHNICS

AN ALTERNATIVE ANALYSIS FOR DEVELOPING THE SWELLING MODEL FOR EXPANSIVE CLAYS
Moshe Livneh ... 765

EXPRESSWAY CONSTRUCTION ON YOUNG KARST IN BRECCIA (VIPAVA VALLEY, SLOVENIA)
Martin Knez, Tadej Slabe .. 773

LARGE EMBANKMENT NEAR SUHAREKÈ ON THE KOSOVO MOTORWAY
Verica Gjetvaj, Ljerka Bušelić ... 781

THE STUPICA TUNNEL – ROCKFALL PROTECTION
Meho Saša Kovačević, Antonia Mirčeta, Lovorka Librić .. 789

A COMPARISON OF 2D AND 3D NUMERICAL SIMULATION FOR TUNNEL EXCAVATION ACCOMPANIED BY MEASUREMENT RESULTS
Mario Bačić, Danijela Marčić, Mehо Saša Kovačević .. 797

PROTECTION MEASURES AGAINST DEBRIS FLOWS, USING FLEXIBLE RING NET BARRIERS IN THE TEUFELSKADRIICH, GERMANY
Roland Bucher, Corinna Wendeler, Vjekoslav Budimir .. 805

14 INTEGRATED TIMETABLES

PERIODIC TIMETABLE CONCEPT FOR THE BOSNIA AND HERZEGOVINA RAILWAY NETWORK
Dženet Ljevo, Andreas Schöbel .. 815

ON THE DELIVERY ROBUSTNESS OF TRAIN TIMETABLES WITH RESPECT TO PRODUCTION REPLANNING POSSIBILITIES
Sara Gestrelius, Martin Aronsson, Malin Forsgren, Hans Dahlberg .. 823

INTEGRATED PERIODIC TIMETABLE IN HUNGARY – EXPERIENCES, HELP FOR VISION
Vикtor Borza, János Földiáк .. 831

TECHNICAL AND TECHNOLOGICAL PRECONDITIONS FOR IMPLEMENTATION OF INTEGRATED TIMETABLE IN REGIONAL PASSENGER TRANSPORT WITH THE REPUBLIC OF SLOVENIA
Tomislav Josip Mlinarić, Tihomir Pleša, Ivica Ljubaj .. 841

TECHNICAL AND TECHNOLOGICAL PRECONDITIONS FOR IMPLEMENTATION OF THE INTEGRATED TIMETABLE IN REGIONAL PASSENGER TRANSPORT IN THE REPUBLIC OF HUNGARY
Tomislav Josip Mlinarić, Denis Lauš, Melkior Vilić .. 847

INTEGRATED PERIODIC TIMETABLE SCHEDULING – TOWARDS AN INTEGRATED TIMETABLE ACROSS CENTRAL EUROPE
Stefan Walter ... 855

THE DEVELOPMENT OF THE INTEGRATED PERIODIC TIMETABLE IN AUSTRIA
Helmut Uttenthaler .. 863

DEVELOPMENT OF PERIODIC TIMETABLE IN THE CZECH REPUBLIC
Vít Janoš, Karel Baudyš .. 869

IMPLEMENTATION OF PERIODIC TIMETABLE IN REGIONAL PASSENGER TRANSPORT OF REPUBLIC OF CROATIA
Tomislav Josip Mlinarić, Tihomir Pleša, Inda Balagić .. 875

15 URBAN TRANSPORT PLANNING AND MODELLING

INFRASTRUCTURE INVESTMENTS AND ITS IMPACT ON REGIONAL ECONOMY – EVIDENCE FROM TWO CASE STUDIES AS STARTING POINT FOR A PLANNING TOOL
Roman Klementschitz .. 883

THE IMPACT OF THE IMPLEMENTATION OF GREEN WAVE IN THE TRAFFIC LIGHT SYSTEM OF A TRAMWAY LINE – THE CASE OF ATHENS TRAMWAY
Christos Pyrgidis, Martha Chatziparaskeva .. 891

PROGRAM FOR DEVELOPMENT OF BICYCLE TRAFFIC IN THE CITY OF ZAGREB
Marijan Ključarić, Krunoslav Tepeš, Hrvoje Pilko .. 899
MODEL FOR A SHORT — TERM FORECAST OF VEHICLES IN BITOLA TOWN
Vaska Atanasova, Lidija Markovik ... 907

E—MOBILITY IN URBAN AREAS AND THE IMPACT OF PARKING ORGANISATION
Harald Frey, Anna Mayerthaler, Paul Pfaffenbichler, Tadej Brezina 915

DEMOGRAPHIC MODEL ‘AGE—COHORT’ FOR MODELLING OF URBAN MOBILITY IN LONG TERM
Zoran Krakutovski .. 923

APPROACH TO DEALING WITH THE TRANSPORT DEMAND MANAGEMENT
IN CITIES WITH THE REVIEW ON CITY OF ZAGREB
Marko Slavulj, Davor Brčić, Ljupko Šimunović ... 929

NEW TRANSPORTATION SYSTEM OF THE CITY OF DUBROVNIK
Damir Pološki, Željko Stepan, Igor Majstorović ... 937

TRAFFIC LIGHTS ON CONSECUTIVE INTERSECTIONS AND PEDESTRIAN CROSSINGS
ALONG LINEAR SETTLEMENTS LOCATED ON NATIONAL ROADS
Alina Burlacu, Mihai Dicu, Valentin Anton .. 945

REQUIREMENTS FOR HIGH QUALITY CYCLING INFRASTRUCTURE DESIGN
Tadej Brezina, Nikolaus Ibesich, Martin Niegli, Helmut Lemmerer 953

CRITICAL PLANNING AND DESIGN PARAMETERS FOR GARAGES
Rudolf Eger ... 961

FUTURE TRANSPORT NETWORK OF THE CITY OF DUBROVNIK
Igor Majstorović, Mario Njegovec, Ana Rigo ... 969

16 URBAN TRANSPORT INFRASTRUCTURE

SPEED AS AN ELEMENT FOR DESIGNING ROUNDABOUTS
Hrvoje Pilko, Davor Brčić, Nikola Šubić ... 981

DEVELOPMENT OF METRO ZAGREB PROJECT
Davorin Kolić .. 989

MINI—ROUNDABOUTS IN URBAN AREAS
Sanja Šurdonja, Sergije Babić, Aleksandra Deluka—Tibljaš, Marijana Cuculić ... 997

DESIGN ELEMENTS OF MODERN ROUNDABOUTS
Mario Njegovec, Željko Stepan, Ana Rigo .. 1005

RENAISSANCE OF THE RAILWAY CONNECTION TRSTENA—NOWY TARG
Juraj Muzik, Zuzana Gocálová, Andrej Villim, Janka Šestáková, Ľubomír Pepucha ... 1013

17 VEHICLES

BOARDING ACCESSIBILITY TO TRAIN VEHICLES FOR EVERYONE
Bernhard Rüger, Goran Simic ... 1019

RAILWAY INTERIORS IN ORDER TO REDUCE DWELL TIME
Bernhard Rüger ... 1027

VIRTUAL ROAD MODELS FROM DYNAMIC MEASUREMENTS
Kai Tejkl, Wolfram Ressel .. 1033

IDEA AND TESTS OF THE RAILWAY WAGON WITH A ROTATABLE PLATFORM FOR INTERMODAL TRANSPORT
Tadeusz Niezgoda, Wieslaw Krason, Wieslaw Barnat 1041

18 TRAFFIC SAFETY

SAFETY MEASURES ON RAIL AND ROAD ENGINEERING STRUCTURES — A COMPARATIVE ASSESSMENT
Christos Pyrgidis, Fotini Kehagia .. 1051

CONTROL SYSTEM FOR TRAINS IN MOVEMENT
Dobrinka Atmadzhova, Emil Dimitrov, Nencho Nenov 1059
ENSURING SAFETY OF OPERATION BY AUTOMATIC MEASUREMENT OF ROLLING STOCK WHEELS GEOMETRY
Janusz Madejski ... 1067

THE ANALYSIS OF TRAFFIC ACCIDENTS ON LITHUANIAN STATE ROADS
Stanislav Mamčic, Henrikas Sivilevičius .. 1077

ANALYSIS OF ROAD TRAFFIC SAFETY AFTER THE CONSTRUCTION OF THE FULL PROFILE OF THE RIJEKA—ZAGREB MOTORWAY
Željko Denona, Boris Huzjan, Tatjana Matković ... 1085

INTEGRATING HUMAN FACTOR IN THE ANALYSIS OF THE INTERACTION ‘TRAM — CAR DRIVERS’
Fatiha Moutchou, Abdelghani Cherkaoui, El Miloudi El Koursi ... 1093

METHODOLOGY FOR SAFETY PERFORMANCE ASSESSMENT OF HIGHWAY INFRASTRUCTURE — ISSUES, RECENT APPLICATIONS AND FUTURE DIRECTIONS
Bhagwant Persaud .. 1101

DRIVER’S DISTRACTION AND INATTENTION PROFILE IN TYPICAL URBAN HIGH SPEED ARTERIALS
Eleni Misokefalou, Nikolaos Eliou ... 1109

SIGHT DISTANCE TESTS AT ROAD INTERSECTIONS WITH UNFAVOURABLE ANGLES
Ivica Stančerić, Željko Korlaet, Vesna Dragčević ... 1117

THE BEHAVIOUR OF PASSIVELY SAFE ROADSIDE COLUMNS IN IMPACT WITH VEHICLES
Višnja Tkalčević Lakušić, Stjepan Lakušić ... 1129

ACCIDENTS AT THE LEVEL CROSSINGS IN LITHUANIAN RAILWAYS
Inesa Gailienė, Vaidas Ramūnas, Kęstutis Skerys ... 1139

ANTI–SLIP RUBBER BASE FOR PEDESTRIAN CROSSINGS
Marko Hoić, Igor Keser ... 1147

A MODEL FOR ASSESSING COLLISION RISK ON AUTOMATIC LEVEL CROSSINGS
Mohamed Ghazel ... 1151

SAFETY OF TRAFFIC ON RAIL-ROAD CROSSINGS WITH SPECIAL REVIEW OF EU DIRECTIVES ON TRAFFIC SAFETY— PROPOSALS FOR IMPROVEMENTS
Georg–Davor Lisicin, Igor Novačić .. 1159

AUTHOR INDEX .. 1169
SPEED AS AN ELEMENT FOR DESIGNING ROUNDABOUTS

Hrvoje Pilko¹, Davor Brčić¹, Nikola Šubić²
1 University of Zagreb Faculty of Transport and Traffic Sciences, Croatia
2 HOK Insurance d.d. Zagreb, Croatia

Abstract

The increasing construction and implementation of roundabouts in the last 20 years is a result of a need for capacity increment, as well as the safety level increment on road intersections at-grade. Designing and shaping roundabouts, especially in urban areas, represents a complicated problem with a number of different conditioned elements that need to be satisfied. Geometrical elements such as the dimension of the outer roundabout diameter and number and width of the lanes considerably affect the trajectory of the vehicle’s path through the intersection, respectively the vehicle speed that has an immediate effect on the safety and the capacity of the roundabout. Through a depiction of four existing roundabouts in the City of Zagreb, this paper will analyze the speed as an important roundabout designing factor. The research results will provide guidelines for roundabout designers, considering that the design speed is in correlation with the measured actual vehicle speed on a roundabout.

Keywords: roundabouts in urban areas, modelling and designing, vehicle movement trajectory vehicle speed

1 Introduction

Modelling and designing roundabouts with small diameters (Dv ≤ 35m) in urban areas, presents a complicated task where a series of conditioned elements must be satisfied. Geometrical elements such as the inscribed circle radius and the number and width of the approaching lanes considerably affect the shape of vehicle movement trajectory through the intersection, i.e. the speed of the vehicles that has direct impact on the roundabout safety and capacity. A well-designed roundabout reduces the relative speeds between conflicting traffic streams by requiring vehicles to negotiate the roundabout along a curved path. Therefore, the ability to predict the vehicular speeds through the roundabout in the preliminary design is an important element while designing and modelling roundabouts. This paper will show an analysis of four roundabouts in the City of Zagreb, as well as the predicted speed on the roundabout entrance, circulatory roadway and exit in relation with the actual measured speeds of the analyzed intersections.

2 The speed on the vehicle path through roundabout

2.1 Design speed

Achieving the adequate speed throughout the roundabout results in accident possibility decrement, and also in intersection capacity increment. With the increment of the trajectory curve, the speed between the vehicles entering the circulatory roadway decreases as well as the speed of the vehicles already in the roundabout. Thus, the number of traffic accidents that happen while entering or exiting the circulatory roadway considerably decrease. However, on
roundabouts with multilane roundabouts (on circular roadways and approach legs) increasing vehicle path curvature creates greater side friction between adjacent traffic. This could result in traffic accident increment caused by the interlacing of vehicles or their overrunning the roadway [6]. Therefore, with the goal of decreasing traffic accidents for every roundabout type an optimum design speed is suggested (Figure 1) [6].

![Figure 1 Depiction of the design speed values for a single-lane roundabout [6]](image)

Table 1 shows maximum recommended values of the design speed for a vehicle entering a roundabout.

<table>
<thead>
<tr>
<th>Roundabout type</th>
<th>Maximum recommended design speed at the roundabout entrance [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini roundabout (RKTₘ)</td>
<td>25 [km/h]</td>
</tr>
<tr>
<td>Small, single-lane (¹) roundabout (RKᵀₘ)</td>
<td>35 [km/h]</td>
</tr>
<tr>
<td>Small, double-lane (²) roundabout (RKᵀₐ)</td>
<td>40 [km/h]</td>
</tr>
<tr>
<td>Medium, single-lane (RKTSV)</td>
<td>40 [km/h]</td>
</tr>
<tr>
<td>Medium, double-lane (RKTSV.2)</td>
<td>50 [km/h]</td>
</tr>
</tbody>
</table>

Calculating the design speed is based on the radii of the vehicle path as shown:

\[V = \sqrt{127R(e + f)} \]

(1)

where: \(V \) = design speed [km/h], \(R \) = radius [m], \(e \) = superelevation rate [m/m], \(f \) = side friction factor [6].

Adherence between the pneumatic and the roadway is important for the stability and the safety of the vehicle movement through the roundabout, i.e. for the safer negotiation of the vehicle path. Superelevation values are usually assumed to be +0.02 for entry and exit curves and -0.02 for curves around the central island. Values of the side friction factor depend on the vehicle speed, the roadway type and the condition of the roadway (Figure 2.).

The design speed shouldn't differ considerably from the actual roundabout speed, and should be in correlation with other design parameters, respectively with the presumed traffic environment [4, 6].
2.2 Vehicle path through the roundabout

For determining the speed on the roundabout, it is necessary to determine the fastest vehicle path allowed by the geometry (the trajectory that allows the maximum vehicle speed through the roundabout). While determining the vehicle path it is assumed that there is no other traffic or marked traffic lanes. Therefore, the vehicle can move freely through the approach leg, the approach entrance, around the central island, and towards the exit. It can be noticed that every vehicle path is characterized by three radii: the entry path radius, circulating path radius and the exit path radius. It is assumed that the vehicle is 2 m wide, and that it will maintain a minimum clearance of 0.5 m from a roadway centerline or concrete curb and the drawn edge of the splitter island. Therefore, the centerline of the vehicle path is 1.5 m away from a roadway centerline, 1.5 m away from the concrete curb and 1.0 m away from the drawn line of the splitter island (Figure 3) [4, 6].

The fastest vehicle path for the drive through manoeuvre is a series of reverse curves (to the trajectory on the right a trajectory on the left continues, and then a right trajectory again takes place). In cases with no central island the vehicle path will be straight. Therefore, the radius of reverse curve depends on the smallest radius that usually appears while the vehicle turns around the central island. For all the approaches it is necessary to sketch the fastest vehicle paths, which can be done by using the AutoCAD tool [1, 4, 5, 6].
2.3 Vehicle path radii on roundabouts

With the goal of achieving an adequate design speed for the fastest vehicle path it is necessary to check the consistency/permanence for all movements. Speed consistency results in a higher level of traffic safety by decreasing the speed difference among conflicting traffic flows. Also, it simplifies the task of merging into the conflicting traffic stream, minimizing critical gaps, thus optimizing entry capacity. Therefore, for each approach it is necessary to check five critical radii: R1 – entry path radius; R2 – circulating path radius; R3 – exit path radius; R4 – left-turn path radius; R5 – right-turn path radius (Figure 4.). It is necessary to note that the values of these radii are not equal to the presumed curb radii [4, 6].

![Vehicle path radii](image)

It is desirable that on the fastest vehicle path, R1 is smaller than R2, which on the other hand needs to be smaller than R3. This ensures that speeds will be reduced to their lowest level at the roundabout entry and will thereby reduce the likelihood of loss-of-control crashes. In cases where the R1 < R2 condition is not possible to satisfy, then it is necessary that R1 is greater than R2 provided the relative difference in speeds is less than 20 km/h. At mini and small roundabouts with higher intensity of pedestrian traffic, and with the goal of maximizing exit speeds, it is desirable that the exiting radii are equal or inconsiderably greater than R2. By checking the values of the radius R4 the condition that maximum speed difference between the entrance flow and the circulatory roadway flow is smaller than 20km/h is assured. The design speed for the R5 radius should be the same as the maximum design speed of the whole roundabout and not higher than 20km/h from the design speed of the R4 radius, which has a conflict point with the R2 [4, 6].

3 Analysis of the research results

The analysis of the speed on the vehicle movement trajectory in the conditions of a normal flow has been conducted on four single-lane roundabouts with four single-lane approaches, situated in central and periphery part of Zagreb. Design parameters of the observed roundabouts are shown in Table 2. Because of the design characteristics of the chosen roundabouts and analyzed traffic flow movements, speed on the vehicle path through a roundabout from every leg approach has been analyzed. The vehicle speed at the entrance (V1), in the roundabout (V2) and at the roundabout exit (V3) was measured, as well as the corresponding radii (R1,
R2 and R3). Speed on right turns (V4) and left turns (V5) through the roundabout, respectively, the radii (R2 and R3) because of previously mentioned reasons are not the research topic.

Measurements of the approaching vehicle speed were done in cooperation with The Ministry of the Interior on the 07.07.2008., Tuesday, in morning peak-hours, in intervals of 5, 10 and 15 minutes. Meteorological conditions were appropriate, it was mostly sunny with slight clouds which allowed good visibility on all intersections, and the roadway was dry. In accordance with the specifics of analyzed intersections, and needed information on the traffic flow speed and technical characteristics of the instrument a MULTANOVA 6F instrument was chosen and used. During measurements a police automobile without police markings was used along with an officer in a civil uniform, in order to reduce the possibility of spotting the police, which could affect the driver reactions [1, 5]. Measurements of the approaching speed, the speed in the circulatory roadway, and the speed at the roundabout exit were done on the 15.09.2011., Thursday, in the morning peak-hours, in intervals of 15 minutes with a GPS installed in a personal vehicle. Also, meteorological conditions were appropriate, sunny weather enabled good visibility on all intersections, and the roadway was dry.

Table 2 Design elements of chosen roundabouts [1, 5]

<table>
<thead>
<tr>
<th>Red. br.</th>
<th>Oznaka</th>
<th>Naziv raskržja/prometnice</th>
<th>Dv [m]</th>
<th>D0 [m]</th>
<th>tk [m]</th>
<th>q [%]</th>
<th>n [t]</th>
<th>b0 [m]</th>
<th>Uvozljivost [m]</th>
<th>n-tračnosti [k/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>RKTM</td>
<td>Sveti Duš - Kurinčak</td>
<td>20.0</td>
<td>6.0</td>
<td>7.0</td>
<td>-1.5</td>
<td>3</td>
<td>7.5</td>
<td>3.5/3.6</td>
<td>1/1</td>
</tr>
<tr>
<td>02.</td>
<td>RKTM</td>
<td>Petrova - Jordanovac</td>
<td>25.0</td>
<td>12.0</td>
<td>6.5</td>
<td>-1.5</td>
<td>4</td>
<td>8.0</td>
<td>3.5/4.5</td>
<td>1/1</td>
</tr>
<tr>
<td>03.</td>
<td>RKTM</td>
<td>Vojanka - Bijenička</td>
<td>22.0</td>
<td>13.0</td>
<td>4.5</td>
<td>-3.0</td>
<td>4</td>
<td>8.0</td>
<td>4.0/4.0</td>
<td>1/1</td>
</tr>
<tr>
<td>04.</td>
<td>RKTM</td>
<td>Radnička cesta - Petruševac 1</td>
<td>40.0</td>
<td>28.0</td>
<td>6.0</td>
<td>-0.5</td>
<td>4</td>
<td>6.5</td>
<td>3.0/3.5</td>
<td>1/1</td>
</tr>
</tbody>
</table>

Depiction: Dv – outer roundabout diameter [m], D0 – inner roundabout diameter [m], tk – circular roadway width [m], q - superelevation rate on circular roadway gradient [%], b0 – approach leg width [m].

Table 3 shows data acquired with speed measurements for vehicle movement trajectories through the roundabout. The design speed of the roundabout was calculated in accordance with the formula (1) with the help of measured radii in the layouts [4, 5, 6], while on the specimen of 50 measurements the average measured vehicle speed was depicted, as well as the deviating values.

Table 3 Design speed and average measured vehicle speed on chosen intersections

| Naziv raskržja / Oznaka privoza | Rv [m] | R0 [m] | R [m] | \(V_1\) [km/h] | \(V_2\) [km/h] | \(V_3\) [km/h] | \(V_4\) [km/h] | \(V_5\) [km/h] | \(V_6\) [km/h] | \(V_7\) [km/h] | \(V_8\) [km/h] | \(V_9\) [km/h] | \(V_{10}\) [km/h] | \(V_{11}\) [km/h] | \(V_{12}\) [km/h] | \(V_{13}\) [km/h] | \(V_{14}\) [km/h] | \(V_{15}\) [km/h] | \(V_{16}\) [km/h] | \(V_{17}\) [km/h] | \(V_{18}\) [km/h] | \(V_{19}\) [km/h] | \(V_{20}\) [km/h] | \(V_{21}\) [km/h] | \(V_{22}\) [km/h] | \(V_{23}\) [km/h] | \(V_{24}\) [km/h] | \(V_{25}\) [km/h] | \(V_{26}\) [km/h] | \(V_{27}\) [km/h] | \(V_{28}\) [km/h] | \(V_{29}\) [km/h] | \(V_{30}\) [km/h] | \(V_{31}\) [km/h] | \(V_{32}\) [km/h] | \(V_{33}\) [km/h] | \(V_{34}\) [km/h] | \(V_{35}\) [km/h] | \(V_{36}\) [km/h] | \(V_{37}\) [km/h] | \(V_{38}\) [km/h] | \(V_{39}\) [km/h] | \(V_{40}\) [km/h] | \(V_{41}\) [km/h] | \(V_{42}\) [km/h] | \(V_{43}\) [km/h] | \(V_{44}\) [km/h] | \(V_{45}\) [km/h] | \(V_{46}\) [km/h] | \(V_{47}\) [km/h] | \(V_{48}\) [km/h] | \(V_{49}\) [km/h] | \(V_{50}\) [km/h] | \(V_{51}\) [km/h] | \(V_{52}\) [km/h] | \(V_{53}\) [km/h] | \(V_{54}\) [km/h] | \(V_{55}\) [km/h] | \(V_{56}\) [km/h] | \(V_{57}\) [km/h] | \(V_{58}\) [km/h] | \(V_{59}\) [km/h] | \(V_{60}\) [km/h] | \(V_{61}\) [km/h] | \(V_{62}\) [km/h] | \(V_{63}\) [km/h] | \(V_{64}\) [km/h] | \(V_{65}\) [km/h] | \(V_{66}\) [km/h] | \(V_{67}\) [km/h] | \(V_{68}\) [km/h] | \(V_{69}\) [km/h] | \(V_{70}\) [km/h] | \(V_{71}\) [km/h] | \(V_{72}\) [km/h] | \(V_{73}\) [km/h] | \(V_{74}\) [km/h] | \(V_{75}\) [km/h] | \(V_{76}\) [km/h] | \(V_{77}\) [km/h] | \(V_{78}\) [km/h] | \(V_{79}\) [km/h] | \(V_{80}\) [km/h] | \(V_{81}\) [km/h] | \(V_{82}\) [km/h] | \(V_{83}\) [km/h] | \(V_{84}\) [km/h] | \(V_{85}\) [km/h] | \(V_{86}\) [km/h] | \(V_{87}\) [km/h] | \(V_{88}\) [km/h] | \(V_{89}\) [km/h] | \(V_{90}\) [km/h] | \(V_{91}\) [km/h] | \(V_{92}\) [km/h] | \(V_{93}\) [km/h] | \(V_{94}\) [km/h] | \(V_{95}\) [km/h] | \(V_{96}\) [km/h] | \(V_{97}\) [km/h] | \(V_{98}\) [km/h] | \(V_{99}\) [km/h] | \(V_{100}\) [km/h] |

For comparison of acquired results, speed on the vehicle path through the roundabout is shown in the following graphs.
Figure 5 The relationship of the design speed and the measured speed in the roundabout Sv. Duh–Kuniščak

Figure 6 The relationship of the design speed and the measured speed in the roundabout Petrova–Jordanovac

Figure 7 The relationship of the design speed and the measured speed in the roundabout Voćarska–Bijenička
On the Figures 5, 6, 7 and 8 the relationship between the measured vehicle speeds is shown, respectively from every approach. The diagrams show that the conditions $R_1, R_2 < R_3$ have been satisfied while designing the roundabout. Respectively, the lowest measured speed is the one on the vehicle path around the central island, while the highest speeds are measured at the roundabout exit.

Research results also show that average values of measured speed at the entrance are smaller than 35 km/h, and are in accordance with the recommendations from Table 2. However, on certain intersections deviations of measured individual speeds from the design speed were noted (Table 3.). On the Sv. Duh–Kuničak intersection the average measured speed from the approach leg 3 to the approach leg 1 was 15.50% smaller than the design speed. On the Petrova–Jordanovac intersection the average measured speed from the approach 3 to the approach 1 had a 21.11% smaller value than the design speed, while the actual speed from the approach 2 to the approach 4 was 4.46% higher than the design speed. On the Vojićarska–Bijenička intersection the measured speed from the approach 1 to the approach 3 was lower than the design speed for 10.23%, while the same speed was 16.97% higher than the design speed for the movement from the approach 4 to the approach leg 2. On the Radnička–Petruševac intersection the average measured speed from the approach 3 to the approach 1 was 16.65% smaller than the design speed, while for the movement from the approach 4 to the approach 2 the speed difference was 12.21% (actual speed was higher than the design speed). These deviations are a result of specific spatial locations of mentioned roundabouts, their design elements and characteristics of traffic flow during the measurements.

4 Conclusion

Designing and dimensioning of roundabouts with small diameters in urban areas ($D \leq 35$ m) presents a complex problem where it is necessary to determine a series of elements out of which the size of the inner and outer diameter of the roundabout, the number and width of approaching legs are of most importance. The mentioned elements considerably affect the vehicle path through the roundabout, i.e. the speed of the vehicles that has direct impact on the roundabout safety and capacity [1, 4, 5, 6].

The research on the vehicle path speed in normal conditions was conducted on four single-lane roundabouts with four single-lane approaches in the City of Zagreb. The research results showed that the basic design condition $R_1, R_2 < R_3$ was satisfied. Looking at traffic intersections, deviations between the design and actual speed are spanning from -21.11% to +16.69%, and are the result of the location and function of the intersection in the road network, design elements and characteristics of traffic flow as well as driver conduct during the measurements.
It should be pointed out, that in the Republic of Croatia there is no existing legislative regu-
lative for roundabout design. In the existing guidelines 'Smjernice za projektiranje raskrižja
u naseljima sa stajališta sigurnosti prometa' [7] conditions/rules for determining the design
speed are not defined. Therefore, guidelines 'Roundabouts; An Informational Guide, 2000,
Federal Highway Administration'[6] can serve the designers while designing the roundabout
speed, which the conducted research confirms.

The conducted research on the vehicle path speed should serve as a basis for future tho-
rough and systematic research of the causality of speed and vehicle path on roundabouts.
The research should comprise a larger number of roundabouts with a bigger number of test
samples, and the speed for left and right turns through the roundabout. Furthermore, it would
be necessary to bring into connection the effect of the design speed with the level of safety
on the existing roundabouts, analyzing traffic accident by types and samples.

References

[1] Korekcija oblikovnosti i sigurnosti u raskrižjima s kružnim tokom prometa (voditelj prof. dr. sc. Ivan
[4] Mehmood, A: Geometric design of single-lane roundabouts for optimum consistency and operation,
[5] Prometna analiza i unapređenje sigurnosti i protočnosti raskrižja s kružnim tokom prometa (studija),
Fakultet prometnih znanosti, Sveučilište u Zagrebu, Zagreb, listopad 2009.
Portland, Oregon, SAD, lipanj 2000.
[7] Smjernice za projektiranje raskrižja u naseljima sa stajališta sigurnosti prometa (prijedlog), Fakultet