Computing Constants in Some Weight Subspaces of Free Associative Complex Algebra

Milenka Sosic
University of Rijeka, Department of Mathematics,
2, Radmile Matejcic, Rijeka 51000, Croatia
msosic@math.uniri.hr

Abstract. Let $\mathcal{N} = \{i_1, i_2, \ldots, i_N\}$ be a fixed subset of nonnegative integers and let q_{ij}, $i, j \in \mathcal{N}$ be given complex numbers. We consider a free unital associative complex algebra \mathcal{B} generated by N generators $\{e_i\}_{i \in \mathcal{N}}$ (each of degree one) together with N linear operators $\partial_i : \mathcal{B} \to \mathcal{B}$, $i \in \mathcal{N}$ that act as twisted derivations on \mathcal{B}. The algebra \mathcal{B} is graded by total degree. More generally \mathcal{B} could be considered as multigraded. Then it has a direct sum decomposition into multigraded (weight) subspaces \mathcal{B}_Q, where Q runs over multisets (over \mathcal{N}). An element C in \mathcal{B} is called a constant if it is annihilated by all operators ∂_i. Then the fundamental problem is to describe the space \mathcal{C} of all constants in algebra \mathcal{B}. The space \mathcal{C} also inherits the direct sum decomposition into multigraded subspaces $\mathcal{C}_Q = \mathcal{B}_Q \cap \mathcal{C}$. Thus it is enough to determine the finite dimensional spaces \mathcal{C}_Q.

AMS Subject Classification: 05Exx;
Key Words and Phrases: q-algebras, noncommutative polynomial algebras, twisted derivations.

1. Introduction

Following the paper [3] by C. Frønsdal, where he studied the classification of the ideals of ‘free differential algebras’ and q-algebras, our study here is modeled on a unital associative complex algebra $\mathcal{B} = \mathbb{C}\langle e_{i_1}, e_{i_2}, \ldots, e_{i_N}\rangle$ with a multiparametric q-differential structure. In the study of the universal R-matrix of quantum groups, the generators $\{e_i\}_{i \in \mathcal{N}}$ could be regarded as positive Serre generators and the negative Serre generators are represented by q-differential operators $\{\partial_i\}_{i \in \mathcal{N}}$, which act on \mathcal{B} according to the twisted Leibniz rule $\partial_i(e_jx) = \delta_{ij}x + q_{ij}e_j\partial_i(x)$ for each $x \in \mathcal{B}$, where the parameters q_{ij} are (complex) values of a function $q : \mathcal{N} \times \mathcal{N} \to \mathbb{C}\setminus\{0\}$, $(i, j) \mapsto q_{ij}$. In this twisted Leibniz rule we ‘mark’ each passing of ∂_i through e_i (from
the left) by additional factor \(q_{ij} \), so \(\partial_i \) is a kind of generalized \(i \)-th partial derivative. This rule is in direct relation to \(q_{ij} \)-canonical commutation relations (see [6, 1.1]), where the authors examine the Hilbert space realizability of the \(\{ q_{ij} \} \)-multiparametric quon algebras. By comparing these two approaches it can be easily seen that the generator \(e_i \) should be regarded as the \(i \)-th creation operator and \(\partial_i \) as the \(i \)-th annihilation operator in the Fock representation. Note that the algebra \(\mathcal{B} \) can also be considered as multigraded, and then the operators \(\partial_i \), of degree \(-1 \), respects the direct sum decomposition of \(\mathcal{B} \) into multigraded subspaces \(\mathcal{B}_Q \) (\(Q \) a multiset over \(\mathcal{N} \)). The action of \(\partial_i \) on any monomial \(e_{j_1 \ldots j_n} \in \mathcal{B}_Q \) (where \(\mathcal{B}_Q \) denotes the monomial basis of \(\mathcal{B}_Q \)) is given explicitly by

\[
\partial_i(e_{j_1 \ldots j_n}) = \sum_{1 \leq p \leq n, j_p = i} q_{ij_1} \ldots q_{ij_{p-1}} e_{j_1 \ldots j_{p-1} j_{p+1} \ldots j_n}.
\]

The number of terms in this sum is equal to the number of appearances (multiplicity) of the generator \(e_i \) in monomial \(e_{j_1 \ldots j_n} = e_{j_1} \cdots e_{j_n} \). An important special case is the following

\[
\partial_i(e^n_i) = (1 + q_n + q^n_i + \cdots + q^{n-1}_n) e_i^{n-1} = [n]_q e_i^{n-1},
\]

where \([n]_q = 1 + q + \cdots + q^{n-1}\) is a \(q \)-analogue of a natural number \(n \).

We define a constant \(C \in \mathcal{B} \) to be any element of \(\mathcal{B} \) with the property \(\partial_p C = 0 \) for each \(1 \leq p \leq N \) (i.e \(\partial_i C = 0 \) for every \(i \in \mathcal{N} \)). Denote by \(\mathcal{C} \) the space of all constants in \(\mathcal{B} \). In our approach to determine constants we define a multidegree operator \(\partial \) on \(\mathcal{B} \) by \(\partial = \sum_{i \in \mathcal{N}} e_i \partial_i \), which preserves the multigrading. Then \(C \) is a constant iff \(\partial C = 0 \) i.e \(\partial_i C = 0 \) for each \(i \in \mathcal{N} \).

Now we can study the restrictions \(\partial^Q \) of \(\partial \) to \(\mathcal{B}_Q \). If we denote by \(\mathcal{C}_Q \) the space of all constants in \(\mathcal{B}_Q \), then \(\mathcal{C}_Q = \mathcal{B}_Q \cap \mathcal{C} \). In the case \(\text{Card } Q = 1 \), zero is the only constant in \(\mathcal{B}_Q \). Hence nontrivial constants might exist only in the spaces \(\mathcal{B}_Q \), \(\text{Card } Q \geq 2 \). Our procedure of computing nontrivial constants in \(\mathcal{B}_Q \) is as follows. Let \(\mathcal{B}_Q \) denote the matrix of \(\partial^Q \). Its entries are given by (19) i.e by the polynomials in \(q_{ij} \)’s, so det \(\mathcal{B}_Q \) is also a polynomial in \(q_{ij} \)’s. Of particular interest is the study of det \(\mathcal{B}_Q \). Namely, if det \(\mathcal{B}_Q \neq 0 \) (or equivalently in terminology of Frønsdal’s if the parameters \(q_{ij} \)’s are in general position) then \(\mathcal{C}_Q = \{ 0 \} \). The space \(\mathcal{C}_Q \) is nonzero only for singular parameters \(q_{ij} \)’s for which det \(\mathcal{B}_Q = 0 \). In view of the fact that det \(\mathcal{B}_Q \) has a nice factorization (c.f. Remark 10) with factors \(\beta_T \) for each \(T \subseteq Q \), \(|T| \geq 2 \), we are going to distinguish two types of singular parameters (c.f. (20) resp. (21)), which we shall call \(Q \)-cocycle condition or top cocycle condition resp. \((Q; T)\)-cocycle condition. In the description of certain basic
nontrivial constants belonging to C_Q we shall use certain iterated q-commutators Y_j and certain simple q-commutators X_j and also some binomials X_j defined in the Section 3. Next we study some singular orbits (long and short) and explain the dimension of C_Q (differently than in [3]). Our motivation is to show that the basic constants in degenerated B_Q’s can be constructed from those in the generic case by a certain specialization procedure. This leads us to the conclusion that the fundamental problem of description the constants in C can be reduced to the problem of determining the constants C_Q in generic subspaces C_Q, under the top cocycle condition c_Q. Further studies show that each ‘generic basic constant’ $C_Q \in C_Q$, $Q = l_1 \ldots l_n$ under the top cocycle condition can be expressed in terms of $(n-1)!$ iterated q-commutators $Y_{l_1 \xi}$, where $l_1 \in Q$ is fixed and the remaining $n-1$ indices $\xi = j_2 \ldots j_n$ vary. The cases $n = 3, 4$ are treated in Remark 11. The cases $n \geq 5$ are more complicated and will not be considered here.

2. Free associative complex algebra B

Let $\mathbb{N}_0 = \{0, 1, \ldots \}$ be the set of nonnegative integers and let $\mathcal{N} = \{i_1, \ldots, i_N\}$ be a fixed subset of \mathbb{N}_0. Then we denote by $B = B_{\mathcal{N}} = \mathbb{C}\langle e_{i_1}, \ldots, e_{i_N} \rangle$ the free (unital) associative \mathbb{C}-algebra with N generators $\{e_i\}_{i \in \mathcal{N}}$, where degree of each generator e_i is equal to one. We can think of B as an algebra of noncommutative polynomials in N noncommuting variables e_{i_1}, \ldots, e_{i_N}. Every sequence $l_1, \ldots, l_n \in \mathcal{N}$ such that $l_1 \leq \cdots \leq l_n$ we can think of as a multiset $Q = \{l_1 \leq \cdots \leq l_n\}$ over \mathcal{N} of size $n = |Q|$, where $|Q| = \text{Card } Q$ denotes the cardinality of the multiset Q. Sometimes, we will simply write $Q = l_1 \ldots l_n$.

The algebra B is naturally graded by the total degree

$$(1) \quad B = \bigoplus_{n \geq 0} B^n,$$

where $B^0 = \mathbb{C}$ and B^n consists of all homogeneous noncommuting polynomials of total degree n in variables e_{i_1}, \ldots, e_{i_N}. We also have a finer decomposition of B into multigraded components (= weight subspaces)

$$(2) \quad B = \bigoplus_{n \geq 0, l_1 \leq \cdots \leq l_n, l_j \in \mathcal{N}} B_{l_1 \ldots l_n},$$

where each weight subspace $B_Q = B_{l_1 \ldots l_n}$, corresponding to a multiset Q, is given by

$$(3) \quad B_Q = \text{span}_\mathbb{C} \left\{ e_{j_1 \ldots j_n} := e_{j_1} \cdots e_{j_n} \mid j_1 \ldots j_n \in \hat{Q} \right\}. $$
Here $\hat{Q} = S_n Q = \{ \sigma(l_1 \ldots l_n) \mid \sigma \in S_n \}$ denotes the set of all rearrangements of the sequence l_1, \ldots, l_n (i.e. \hat{Q} is the set of all distinct permutations of the multiset Q). Thus $\dim B_{\hat{Q}} = |\hat{Q}|$.

If $l_1, \ldots, l_n \in \mathcal{N}$ satisfy $l_1 < \cdots < l_n$, then Q is a set, $Q = \{ l_1, \ldots, l_n \} \subseteq \mathcal{N}$ and the corresponding weight subspace B_Q we call \textit{generic}. Any other weight subspaces B_Q (i.e nongeneric) we call \textit{degenerate}.

Denote by B^gen the (generic) subspace of B spanned by all multilinear monomials and by B^deg the (degenerate) subspace of B spanned by all monomials which are nonlinear in at least one variable. Then the direct sum decomposition (1) can be written in the form: $B = B^\text{gen} \oplus B^\text{deg}$, where

$$B^\text{gen} = \bigoplus_{Q \text{ a set}} B_Q^\text{gen}, \quad B^\text{deg} = \bigoplus_{Q \text{ a multiset (not set)}} B_Q^\text{deg}.$$

Fix a map $q : \mathcal{N} \times \mathcal{N} \rightarrow \mathbb{C}, (i, j) \mapsto q_{ij}$, $i, j \in \mathcal{N}$. Complex numbers q_{ij}’s are treated as parameters and q can be interpreted as a point in the parameter space $\mathbb{C}^{\mathcal{N}^2}$.

On the algebra B we introduce N linear operators $\partial_i = \partial_i^q : B \rightarrow B$, $i \in \mathcal{N}$, defined recursively, as follows:

$$\partial_i(1) = 0, \quad \partial_i(e_j) = \delta_{ij},$$

$$\partial_i(e_j x) = \delta_{ij} x + q_{ij} e_j \partial_i(x) \quad \text{for each } x \in B, \ i, j \in \mathcal{N}. \tag{5}$$

(Here $\delta_{ij} = 1$ if $i = j$, and 0 otherwise is a standard Kronecker delta.) From (5) we see that the operators ∂_i, $i \in \mathcal{N}$ act as a generalized i-th partial derivative on the algebra B. As a result, they depend on additional parameters (complex numbers) q_{ij}, so we say that ∂_i is a multi-parametrically deformed i-th partial derivative or shortly q-deformed i-th partial derivative. In particular, if all q_{ij}’s are equal to one, then ∂_i coincides with a usual i-th partial derivative.

In what follows we shall consider B equipped with this ‘q-differential structure’.

By abbreviating $j_1 \ldots j_n$ by \hat{j} let us denote by $B_Q = \left\{ e_\hat{j} \mid \hat{j} \in \hat{Q} \right\}$ the monomial basis of B_Q. Then by applying the formula (5) several times we get an explicit formula for the action of ∂_i on a typical monomial $e_\hat{j} \in B_Q$ as follows:

$$\partial_i(e_\hat{j}) = \sum_{1 \leq k \leq n, j_k = i} q_{i j_1} \cdots q_{i j_{k-1}} e_{j_1 \ldots j_{k-1} j_k \ldots j_n} \tag{6}$$
(c.f. eq. (21) in [5]). Here \(\hat{j}_k \) denotes the omission of the corresponding index \(j_k \).

Eg. \(\partial_2(e_{1321212}) = q_{21}q_{23}e_{131212} + q_{21}^2q_{22}q_{23}e_{132112} + q_{21}q_{22}^2q_{23}e_{132121} \).

In special case (where there is only one \(k, 1 \leq k \leq n \) such that \(j_k = i \)) the formula (6) is reduced to:

\[
\partial_i(e_j) = q_{ij} \cdot \ldots \cdot q_{ij_{k-1}}e_{j_{k-1}j_{k-2} \ldots j_1}.
\]

Similarly, if \(j_k = i \) for all \(1 \leq k \leq n \), then the formula (6) reads as:

\[
\partial_i(e^n) = [n]_q e^{n-1},
\]

where

\[
[n]_q := \sum_{0 \leq k \leq n-1} q^k = 1 + q + \cdots + q^{n-1}, \quad n \geq 1.
\]

Note that formula (9) is a \(q \)-analogue of the natural number \(n \), therefore, for \(q_{ii} = 1 \) from the formula (8) we get the classical formula

\[
\partial_i(e^n) = n \cdot e^{n-1}.
\]

Suppose that \(x \in B_{l_1 \ldots l_n} \). Then for any \(y \in B \) we have a formula more general than (5):

\[
\partial_i(xy) = \partial_i(x)y + q_{il_1} \cdots q_{il_n} x \partial_i(y) \quad \text{for each } i \in \mathcal{N}.
\]

3. Commutators and constants in algebra \(B \)

In order to write efficiently some constants in the algebra \(B \) we first introduce the following abbreviations:

(i) for any subset \(T \subseteq Q, \ |T| \geq 2 \):

\[
q_T := \prod_{a \neq b \in T} q_{ab}
\]

(c.f. eq. (4.1) in [4]); in particular \(q_{\{i,j\}} = q_{ij}q_{ji} \);

(ii) for any sequence \(j_1 \ldots j_p \) we define \(X^{j_1 \ldots j_p} \) to be the following binomials:

\[
X^{j_1 \ldots j_p} := e_{j_1 \ldots j_p} + (-1)^{p-1} \prod_{1 \leq a < b \leq p} q_{j_aj_b} e_{j_b \ldots j_1}.
\]

(with \(X^j := e_j \) for \(p = 1 \));

(iii) for any sequence \(j_1 \ldots j_p \) we define \(X_{j_1 \ldots j_p} \) to be the following simple \(q \)-commutators:

\[
X_{j_1} := e_{j_1}, \quad X_{j_1 \ldots j_p} := [e_{j_1 \ldots j_{p-1}}, e_{j_p}] q_{j_pj_1} \cdots q_{j_pj_{p-1}}.
\]
and let the iterated q-commutators $Y_{j_1...j_p}$ be defined recursively by

$$
(14) \quad Y_{j_1} := e_{j_1}, \quad Y_{j_1...j_p} := [Y_{j_1...j_{p-1}}, e_{j_p}]_{q_{jp}q_{j_1}...q_{jp-1}}.
$$

Remark 1. For $p = 2$ we have:

$$
X_{j_1j_2} = X_{j_1j_2} = e_{j_1j_2} - q_{j_2j_1} e_{j_2j_1}.
$$

In the following three propositions we show how to compute the action of ∂_i on the simple q-commutators, the iterated q-commutators and binomials $X_{j_1...j_p}$. (Note that for $p = 1$ we get: $\partial_i(e_{j_1}) = \delta_{ij_1}$ for each $i \in \mathcal{N}$.)

Proposition 2. Let $p \geq 2$, $j_1, \ldots, j_p \in \mathcal{N}$. Then for each $i \in \mathcal{N}$ we have

$$
(15) \quad \partial_i \left(X_{j_1...j_p} \right) = \left[\partial_i \left(e_{j_1...j_{p-1}} \right), e_{j_p} \right]_{q_{jp}q_{j_1}...q_{jp-1}}.
$$

Proof. By using (10) we get

\[
\partial_i \left(X_{j_1...j_p} \right) = \partial_i \left(e_{j_1...j_{p-1}} e_{j_p} - q_{j_p j_1} \cdots q_{j_p j_{p-1}} e_{j_p} e_{j_1...j_{p-1}} \right) \\
= \left[\partial_i \left(e_{j_1...j_{p-1}} \right), e_{j_p} + q_{j_p j_1} \cdots q_{j_p j_{p-1}} e_{j_1...j_{p-1}} \partial_i \left(e_{j_p} \right) \right] \\
- q_{j_p j_1} \cdots q_{j_p j_{p-1}} \left[\partial_i \left(e_{j_p} \right), e_{j_1...j_{p-1}} + q_{j_p j_1} e_{j_p} \partial_i \left(e_{j_1...j_{p-1}} \right) \right] \\
= \partial_i \left(e_{j_1...j_{p-1}} \right) e_{j_p} - q_{j_p j_1} q_{j_p j_1} \cdots q_{j_p j_{p-1}} e_{j_p} \partial_i \left(e_{j_1...j_{p-1}} \right) \\
= \left[\partial_i \left(e_{j_1...j_{p-1}} \right), e_{j_p} \right]_{q_{jp}q_{j_1}...q_{jp-1}}.
\]

It is clear that $\partial_i \left(X_{j_1...j_p} \right) = 0$ for each $i \notin \{j_1, \ldots, j_{p-1}\}$. \hfill \square

Proposition 3. Let $p \geq 2$, $j_1, \ldots, j_p \in \mathcal{N}$. Then for each $i \in \mathcal{N}$ we have

$$
(16) \quad \partial_i \left(Y_{j_1...j_p} \right) = \begin{cases}
(1 - q_{(j_1,j_2)}) Y_{j_2...j_p} & \text{if } i = j_1 \\
0 & \text{if } i \neq j_1
\end{cases}
$$

where

$$
(17) \quad Y_{j_2} := e_{j_2}, \quad Y_{j_2...j_p} := [Y_{j_2...j_{p-1}}, e_{j_p}]_{q_{jp}q_{j_2}...q_{jp-1}}.
$$

Proof. For $p = 2$, $Y_{j_1j_2} = [e_{j_1}, e_{j_2}]_{q_{j_1j_2}} = e_{j_1j_2} - q_{j_2j_1} e_{j_2j_1}$ and by using (15) it follows that $\partial_i \left(Y_{j_1j_2} \right) = \delta_{ij_1} (1 - q_{j_2j_1}) e_{j_2}$. If we apply (15) several times, then for any $2 \leq k \leq p$ we get $\partial_i \left(Y_{j_1...j_k} \right) = \delta_{ij_1} (1 - q_{j_2q_{j_2}...q_{j_2}}) Y_{j_2...j_k}^i$, where $Y_{j_2...j_k}^i$ is given by (17) for $j_1 = i$. Finally, it follows (16).
Clearly, if \(q_{(j_1, j_2)} = 1 \), then \(\partial_i (Y_{j_1 \ldots j_p}) = 0 \) for each \(i \in \mathcal{N} \). \(\square \)

Remark 4. The expressions \(q_{j_1 \ldots j_p} \) appearing in (13) and (14) resp. \(q_{(j_1, j_p)} \) appearing in (17) are in Frønsdal [3, Subsections 2.2 and 3.1] denoted by \(a (j_1 \ldots j_p) \) resp. \(b_{j_1} (j_2 \ldots j_p) = q_{j_1} a (j_1 j_2 \ldots j_p) \) and are called the commutation factors.

Proposition 5. Let \(p \geq 2 \), \(j_1, \ldots, j_p \in \mathcal{N} \). Then for each \(i \in \mathcal{N} \) such that \(i = j_k \), we have
\[
\partial_i (X_{j_1 \ldots j_p}) = q_{ij_1} \ldots q_{ij_{k-1}} \left(e_{j_1 \ldots j_k \ldots j_p} + (-1)^{p-1} \prod_{1 \leq a < b \leq p-1} q_{j_k j_a} \sigma_{i j_{k+1} \ldots j_p} e_{j_1 \ldots j_{k-1}} \right),
\]
and \(\partial_i (X_{j_1 \ldots j_p}) = 0 \) otherwise. Here we have used the notation
\[
\sigma_{i j_{k+1} \ldots j_p} := \prod_{k+1 \leq m \leq p} q_{i, j_m}.
\]

Proposition 6. If for some \(i \neq j \in \mathcal{N} \) \(q_{(i,j)} = 1 \), then \(Y_{ji} = -q_{ij} Y_{ij} \).

Proof. From \(q_{(i,j)} = 1 \) we obtain \(q_{ji} = 1 / q_{ij} \) and then \(Y_{ji} = e_j e_i - q_{ij} e_i e_j = -q_{ij} (e_i e_j - q_{ji} e_j e_i) = -q_{ij} Y_{ij} \). \(\square \)

Corollary 7. Let \(j_1, \ldots, j_p \in \mathcal{N} \), \(2 \leq p \leq N \) and \(j_1 \neq j_2 \). If \(q_{(i,j)} = 1 \) then \(Y_{j_1 j_2 j_3 \ldots j_p} = -q_{j_1 j_2} Y_{j_2 j_3 \ldots j_p} \).

Definition 8. A constant in \(\mathcal{B} \) is any element \(C \in \mathcal{B} \) annihilated by all \(\partial_i \)'s \((i \in \mathcal{N}) \) i.e \(\partial_i (C) = 0 \) for every \(i \in \mathcal{N} \).

Denote by \(\mathcal{C} = \{ C \in \mathcal{B} \mid \partial_i (C) = 0, \text{ for all } i \in \mathcal{N} \} \) the space of all constants in \(\mathcal{B} \).

Observe that \(\mathcal{B}_0 = \mathcal{C} \) consists of trivial constants and in \(\mathcal{B}_1 \) the only constant is zero. Thus, nontrivial constants could exist only in the space \(\bigoplus_{n \geq 2} \mathcal{B}_n \).

Definition 9. We define a multidegree operator \(\partial: \mathcal{B} \to \mathcal{B} \) by the formula:
\[
\partial := \sum_{i \in \mathcal{N}} e_i \partial_i,
\]
where \(e_i: \mathcal{B} \to \mathcal{B} \) are considered as (multiplication by \(e_i \)) operators on \(\mathcal{B} \).
Note that \(\partial \) is the operator of degree zero. Clearly,
\[
\partial C = \sum_{i\in\mathbb{N}} e_i \partial_i C = 0 \quad \text{iff} \quad \partial_i C = 0 \quad \text{for all} \quad i \in \mathbb{N}.
\]
Therefore \(C = \ker \partial \), where \(\ker \partial \) denotes the kernel of the multidegree operator \(\partial \). The operator \(\partial \) preserves the direct sum decomposition of the algebra \(\mathcal{B} \), i.e \(\partial \mathcal{B}_Q \subseteq \mathcal{B}_Q \). In other words, each subspace \(\mathcal{B}_Q \) is an invariant subspace of \(\partial \). Denote by \(\partial^Q: \mathcal{B}_Q \rightarrow \mathcal{B}_Q \) the restriction of \(\partial: \mathcal{B} \rightarrow \mathcal{B} \) to the subspace \(\mathcal{B}_Q \), i.e
\[
(18) \quad \partial^Q x = \partial x \quad \text{for every} \quad x \in \mathcal{B}_Q.
\]
Let \(\mathcal{C}_Q \) be the space of all constants belonging to \(\mathcal{B}_Q \). Thus \(\mathcal{C}_Q = \ker \partial^Q \) and \(\mathcal{C}_Q = \mathcal{B}_Q \cap \mathcal{C} \). The space \(\mathcal{C} \) also inherits the direct sum decomposition into multigraded subspaces \(\mathcal{C}_Q \). Hence the fundamental problem to determine the space \(\mathcal{C} \) can be reduced to determine the finite dimensional spaces \(\mathcal{C}_Q (= \ker \partial^Q) \) for all multisets \(Q \) over \(\mathbb{N} \).

Let \(|Q| = n \geq 2 \) and let \(e_{j_1 \ldots j_n} \) be any basis element from a monomial basis \(\mathcal{B}_Q \) of \(\mathcal{B}_Q \). Then by definition of \(\partial^Q \) and using the formula (6) it follows that
\[
(19) \quad \partial^Q (e_{j_1 \ldots j_n}) = \sum_{1 \leq k \leq n, j_k = i} q_{ij_1} \cdots q_{ij_{k-1}} e_{j_1 \ldots \hat{j}_k \ldots j_n},
\]
for each \(j_1 \ldots j_n \in \hat{Q} \).

Let \(\mathcal{B}_Q \) denotes the matrix of \(\partial^Q \) w.r.t \(\mathcal{B}_Q \) (considered with the Johnson-Trotter ordering on permutations c.f. [7]).

For any muliset \(Q = \{k_1^{n_1}, \ldots, k_p^{n_p}\} \) (\(k_i \) distinct) of cardinality \(|Q| = n_1 + \cdots + n_p =: n \) the size of the matrix \(\mathcal{B}_Q \) is equal to the following multinomial coefficient
\[
\frac{n!}{n_1! \cdots n_p!} = \binom{n}{n_1, \ldots, n_p} (= \dim \mathcal{B}_Q).
\]
The entries of \(\mathcal{B}_Q \) are polynomials in \(q_{ij} \)'s, hence its determinant is also a polynomial in \(q_{ij} \)'s. It turns out that the polynomial \(\det \mathcal{B}_Q \) has a nice factorization (which, in case \(Q \) is a set, has only binomial factors, see (26)) with factors \(\beta_T \) for each \(T \subseteq Q, |T| \geq 2 \). Thus, \(\det \mathcal{B}_Q = 0 \).
implies that β_T vanishes for at least one $T \subseteq Q$.

Of particular interest are the actual values of parameters q_{ij}'s (called \textit{singular values} or \textit{singular parameters}) for which at least one $\beta_T = 0$. In other words, we say that parameters q_{ij}'s are singular parameters if $\det B_Q = 0$, otherwise they are regular (i.e parameters in general position). We have that there are no nontrivial constants in B_Q (i.e $C_Q = \{0\}$) when the parameters q_{ij}'s are in general position. The space C_Q is nonzero only for singular parameters. Thus singular parameters play the crucial role in computing (nontrivial) constants in B_Q.

In this paper we shall distinguish two types of singular parameters satisfying

\textbf{Type 1:} (Q-cocycle condition):

\begin{equation}
(20) \quad c_Q := \{\beta_Q = 0, \beta_T \neq 0, \forall T \subsetneq Q\}\end{equation}

or

\textbf{Type 2:} ($(Q;T)$-cocycle condition): for fixed $T \subsetneq Q$

\begin{equation}
(21) \quad c_{Q,T} := \{\beta_Q = 0, \beta_T = 0, \beta_S \neq 0, \forall S \subseteq Q, S \neq T\}\end{equation}

respectively. Notice that

(1) the Q-cocycle condition implies $C_Q \neq \{0\}$, $C_T = \{0\}$, $\forall T \subsetneq Q$ and

(2) the $(Q;T)$-cocycle condition implies $C_Q \neq \{0\}$, $C_T \neq \{0\}$, $C_S = \{0\}$, $\forall S \subseteq Q, S \neq T$.

Sometimes, the Q-cocycle condition we shall simply call ‘top cocycle condition’.

From our experience in finding constants in the cases $|Q| \leq 4$ we guess that Type 2 constants could be obtained from Type 1 constants by certain specialization procedure. Thus in B_Q it is enough to determine the Type 1 constants.

\textbf{Remark 10.} We can rewrite the operator ∂^Q (c.f. (19)) in terms of simpler operators acting on B_Q. Let $T_{1,1} = id$ and let $T_{k,1} = T^Q_{k,1}$ be given as follows

\[T_{k,1} e_{j_1 \ldots j_n} := q_{j_k j_1} \cdots q_{j_k j_{k-1}} e_{j_k j_1 \ldots \hat{j_k} \ldots j_n} \]

for each $j_1 \ldots j_n \in \hat{Q}$, $2 \leq k \leq n$. Then ∂^Q can be rewritten as

\[\partial^Q = \sum_{1 \leq k \leq n} T_{k,1}. \]

Moreover, we have the following (specialized) factorization (a special case of the braid factorization from [2, Proposition 4.7] c.f. matrix
factorization from \([6]\))

\[
\partial Q \cdot C_Q = D_Q.
\]

where

\[
C_Q := (id - T_{n,1}) (id - T_{n-1,1}) \cdots (id - T_{3,1}) (id - T_{2,1}),
\]

\[
D_Q := (id - T_{2,1}^2 T_{n,2}) (id - T_{2,1}^2 T_{n-1,2}) \cdots (id - T_{2,1}^2 T_{3,2}) (id - T_{2,1}^2 T_{2,2}).
\]

Observe that the operators \(T_{2,1}^2 T_{k,2}\) appearing in \(D_Q\) act as

\[
T_{2,1}^2 T_{k,2} e_{j_1 \cdots j_n} = q_{(j_1,j_k)} q_{j_k j_2} \cdots q_{j_k j_{k-1}} e_{j_1 j_2 \cdots j_{k-2} j_{k}}.
\]

Then (22) can be rewritten as

\[
\partial^Q (id - T_{n,1}) M = (id - T_{2,1}^2 T_{n,2}) N
\]

where

\[
M = \prod_{2 \leq k \leq n-1} (id - T_{k,1}), \quad N = \prod_{2 \leq k \leq n-1} (id - T_{2,1}^2 T_{k,2}).
\]

Under the top cocycle condition \(N\) is invertible and we can rewrite (23) further as

\[
\partial^Q (id - T_{n,1}) MN^{-1} = (id - T_{2,1}^2 T_{n,2})
\]

i.e.

\[
\partial^Q (id - T_{n,1}) MN^{-1}(Y) = (id - T_{2,1}^2 T_{n,2})(Y) \quad \text{for each } Y \in B.
\]

From this last formula we can relate: \(\ker (id - T_{2,1}^2 T_{n,2}) \subset B_Q\) to \(\ker \partial^Q = \text{the space of constants in } B_Q\). To each \(Y \in \ker (id - T_{2,1}^2 T_{n,2})\) the right hand side is zero, so the corresponding vector

\[
X := ((id - T_{n,1}) \cdot M \cdot N^{-1} \cdot Y) \in \ker \partial^Q
\]

belongs to \(\ker \partial^Q\), hence is a constant in \(B_Q\). It turns out that

\[
\dim (\ker \partial^Q) = \dim (\ker (id - T_{2,1}^2 T_{n,2})) - \dim (\ker (id - T_{n,1})).
\]

This gives an alternative proof of a result of Frønsdal and Galindo \([4, \text{Theorem 4.1.2}]\) that the space of constants has dimension \((n - 2)!\) in the generic case.

When \(Q\) is a set, then the matrix \(B_Q\) of the operator \(\partial^Q\) (w.r.t monomial basis \(B_Q\)) is a \(n! \times n!\) (monomial) matrix. Its determinant is given explicitly as product of binomial factors \(\beta_T\):

\[
\det B_Q = \prod_{\substack{T \subseteq Q, \\
2 \leq |T| \leq n}} (\beta_T)^{|T|-2!|n-|T|)!.
\]
(c.f. [6, Theorem 1.9.2]), where $\beta_T = 1 - q_T$, with $q_T = \prod_{a \neq b \in T} q_{ab}$ given by (11). Here Q-cocycle resp. $(Q; T)$-cocycle condition take the form

$$c_Q = \{q_T = 1, q_S \neq 1 \text{ for all } T \subseteq Q\},$$

resp.

$$c_{Q; T} = \{q_T = 1, q_S = 1, q_S \neq 1 \text{ for all } S \subseteq Q, S \neq T\}.$$

4. Computation of nontrivial constants

In this section we are going to determine the explicit formulas for nontrivial constants depending on the top cocycle condition, but also for the appropriate $(Q; T)$-cocycle conditions. Here we shall not examine the constants depending on all singular parameters (see [4, Subsection 4.2.] for a detailed overview in the case $|Q| = 3$). In what follows we shall give the dimension of the space C_Q in the generic and degenerate cases (for Type 1 and Type 2 constants).

4.1. Generic case. Let us examine the basic constants in generic subspaces B_Q, $2 \leq |Q| \leq 4$.

4.1.1. Basic constants in the space B_Q, $|Q| = 2$. Let $Q = \{l_1, l_2\}$, ($l_1 < l_2$). Then the matrix of ∂^Q w.r.t the monomial basis $B_{l_1l_2} = \{e_{l_1l_2}, e_{l_2l_1}\}$ is

$$B_{l_1l_2} = \begin{pmatrix} 1 & q_{l_1l_2} \\ q_{l_2l_1} & 1 \end{pmatrix}$$

and hence $\det B_{l_1l_2} = 1 - q_{l_1l_2}$.

So Q-cocycle condition is given by $c_{l_1l_2} = \{q_{l_1l_2} = 1\}$. If $c_{l_1l_2}$ holds, then

$$C_{l_1l_2} = e_{l_1l_2} - q_{l_1l_2}e_{l_2l_1} = Y_{l_1l_2}$$

is a nontrivial constant in $B_{l_1l_2}$, where $Y_{l_1l_2}$ is the iterated q-commutator. Thus the space of constants in $B_{l_1l_2}$ is the following 1-dimensional space $C_{l_1l_2} = \mathbb{C}\{Y_{l_1l_2}\}$.

It is easy to see that $C_{l_1l_2} = \mathbb{C}\{Y_{l_1l_2}\} = \mathbb{C}\{Y_{l_2l_1}\}$ (c.f. Proposition 6). Here $\det B_{l_1l_2}$ has only one factor of the binomial form $1 - q_{l_1l_2}$, so we have only the Q-cocycle condition. In general, when Q-cocycle condition does not hold, the space $C_{l_1l_2}$ is zero.
4.1.2. Basic constants in the space \mathcal{B}_Q, $|Q| = 3$. Let $Q = \{l_1, l_2, l_3\}$, $(l_1 < l_2 < l_3)$. Then the matrix $B_{l_1l_2l_3}$ of ∂^Q w.r.t basis $\mathcal{B}_{l_1l_2l_3} = \{e_{l_1l_2l_3}, e_{l_1l_3l_2}, e_{l_3l_1l_2}, e_{l_3l_2l_1}, e_{l_2l_3l_1}, e_{l_2l_1l_3}\}$ is given by

$$B_{l_1l_2l_3} = \begin{pmatrix}
1 & 0 & 0 & 0 & q_{l_1l_2}q_{l_1l_3} & q_{l_1l_2} \\
0 & 1 & q_{l_1l_3} & q_{l_1l_2} & 0 & 0 \\
q_{l_2l_1} & q_{l_2l_3} & q_{l_2l_1} & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & q_{l_2l_3} & q_{l_2l_1} \\
0 & 0 & q_{l_2l_3} & q_{l_2l_1} & q_{l_2l_3} & 1 & 0 \\
q_{l_3l_1} & q_{l_3l_3} & q_{l_3l_1} & 0 & 0 & 0 & 1
\end{pmatrix}$$

and its determinant is equal to

$$\det B_{l_1l_2l_3} = \left(1 - q_{\{l_1, l_2, l_3\}}\right) \prod_{1 \leq i < j \leq 3} \left(1 - q_{\{l_i, l_j\}}\right).$$

Under the Q-cocycle condition

$$c_{l_1l_2l_3} = \{q_{\{l_1, l_2, l_3\}} = 1, \quad q_{\{l_i, l_j\}} \neq 1 \quad \text{for all} \quad 1 \leq i < j \leq 3\}$$

we get that the space of constants is 1-dimensional

$$C_{l_1l_2l_3} = \mathbb{C} \{C_{l_1l_2l_3}\},$$

where a basic constant $C_{l_1l_2l_3}$ can be written as

$$C_{l_1l_2l_3} = q_{l_1l_2}q_{l_2l_3} \left(1 - q_{\{l_1, l_3\}}\right) X^{l_1l_2l_3} + q_{l_3l_1}q_{l_3l_2} \left(1 - q_{\{l_1, l_2\}}\right) X^{l_3l_1l_2} + q_{l_3l_1}q_{l_2l_3} \left(1 - q_{\{l_2, l_3\}}\right) X^{l_3l_2l_1}$$

or shortly

$$C_{l_1l_2l_3} = \sum_{cyc} q_{l_1l_2}q_{l_2l_3} \left(1 - q_{\{l_1, l_3\}}\right) X^{l_1l_2l_3}$$

(29)

where $X^{ijk} = e_{ijk} + q_{ji}q_{ji}e_{ki}$ are defined in (12) and \sum_{cyc} denotes the cyclic sum.

On the other hand, under $(Q; T)$-cocycle condition ($T = \{l_1, l_2\} \subset Q$ is fixed) we obtain that the constant $C_{l_1l_2l_3}$ further reduces to the iterated q-commutator $Y_{l_1l_2l_3}$, where $\{l_i, l_j, l_k\} = \{1, 2, 3\}$.

For example, assume that $T = \{l_1, l_2\}$. Then the condition (28) now reads as follows

$$c_{l_1l_2l_3} = \{q_{\{l_1, l_2, l_3\}} = 1, \quad q_{\{l_1, l_2\}} = 1, \quad q_{\{l_2, l_3\}} \neq 1, \quad q_{\{l_1, l_3\}} \neq 1\},$$

what implies

$$q_{\{l_1, l_3\}}q_{\{l_2, l_3\}} = 1 \quad \text{i.e.} \quad q_{l_1l_2}q_{l_3l_1}q_{l_2l_3}q_{l_3l_2} = 1.$$

In this case, the constant (29) reduces to

$$C_{l_1l_2l_3} = q_{l_1l_2}q_{l_2l_3} \left(1 - q_{\{l_1, l_3\}}\right) \left(e_{l_1l_2l_3} + q_{l_3l_1}q_{l_3l_2}q_{l_3l_2}e_{l_3l_2l_1}\right) + q_{l_3l_1}q_{l_2l_3} \left(1 - q_{\{l_2, l_3\}}\right) \left(e_{l_2l_3l_1} + q_{l_1l_3}q_{l_1l_2}q_{l_1l_2}e_{l_1l_2l_3}\right).$$
By using that
\[q_{i_1 i_2} (1 - q_{i_2 i_3}) = q_{i_1 i_3} q_{i_1 i_2} \left(1 - \frac{1}{q_{i_1 i_3}} q_{i_1 i_2} \right) = -q_{i_1 i_2} q_{i_2 i_3} (1 - q_{i_1 i_3}) = -q_{i_1 i_2} q_{i_2 i_3} \left(1 - q_{i_1 i_3} \right) \]
and \(q_{i_1 i_2} q_{i_1 i_3} q_{i_2 i_3} q_{i_1 i_2} = q_{i_2 i_3} \) we obtain
\[C_{i_1 i_2 i_3} = q_{i_1 i_2} q_{i_2 i_3} (1 - q_{i_1 i_3}) Y_{i_1 i_2 i_3}, \]
where \(Y_{i_1 i_2 i_3} = e_{i_1 i_2 i_3} + q_{i_1 i_2} q_{i_1 i_3} q_{i_2 i_3} e_{i_1 i_2 i_3} - q_{i_1 i_2} q_{i_1 i_3} e_{i_1 i_2 i_3} - q_{i_1 i_2} e_{i_1 i_2 i_3}. \)

4.1.3. Basic constants in the space \(B_Q \), \(|Q| = 4 \). Let \(Q = \{l_1, l_2, l_3, l_4\} \), \(l_1 < l_2 < l_3 < l_4 \). The matrix \(B_{l_1 l_2 l_3 l_4} \) of \(\partial \mathring{Q} \) in the monomial basis \(\mathfrak{B}_{l_1 l_2 l_3 l_4} \) has determinant given by
\[\det B_{l_1 l_2 l_3 l_4} = (1 - q_{l_1 l_2, l_3 l_4})^2 \prod_{1 \leq i < j \leq 4} (1 - q_{l_1 l_i} l_j l_k l_4) \prod_{1 \leq i < j < k \leq 4} (1 - q_{l_1 l_i} l_j l_k l_4). \]

1) The space of \(Q \)-constants, under the \(Q \)-cocycle condition \(c_{l_1 l_2 l_3 l_4} \) is \(\mathbb{C} \{C_{l_1 l_2 l_3 l_4}, C_{l_1 l_2 l_3 l_4}\} \) with the following basis elements
\[
C_{l_1 l_2 l_3 l_4} = Z_{l_1 l_2 l_3 l_4} + q_{l_1 l_2} q_{l_1 l_3} q_{l_1 l_4} Z_{l_1 l_2 l_3 l_4} + q_{l_2 l_3} q_{l_2 l_4} Z_{l_1 l_2 l_3 l_4}+
\]
\[
C_{l_1 l_2 l_3 l_4} = q_{l_1 l_3} q_{l_1 l_4} Z_{l_1 l_2 l_3 l_4} + q_{l_2 l_3} q_{l_1 l_4} Z_{l_1 l_2 l_3 l_4} + q_{l_2 l_3} q_{l_2 l_4} q_{l_1 l_3} Z_{l_1 l_2 l_3 l_4}.
\]

where
\[
Z_{l_1 l_2 l_3 l_4} := c_{l_1 l_2 l_3 l_4} \left(\frac{1}{q_{l_1 l_3}} V_{l_1 l_2 l_3} + \frac{1}{q_{l_1 l_2}} V_{l_1 l_2 l_3} + q_{l_1 l_2} (q_{l_1 l_2} q_{l_1 l_3} - 1) W_{l_1 l_2 l_3} \right),
\]
\[
Z'_{l_1 l_2 l_3 l_4} := c_{l_1 l_2 l_3 l_4} \left(\frac{1}{q_{l_1 l_3}} W_{l_1 l_2 l_3} + \frac{1}{q_{l_1 l_2}} W_{l_1 l_2 l_3} + q_{l_1 l_2} q_{l_1 l_3} q_{l_1 l_4} - 1 \right) V_{l_1 l_2 l_3}.
\]

With \(X^{i j k m} = e_{i j k m} - q_{i j} q_{k j} q_{m j} q_{i j k m} \) (c.f. (12)).

2) \((Q; T) \)-constants:
a) Let \(|T| = 2\), \(T = \{l_1, l_2\} \subset Q\) and let \(\{l_k, l_m\} = Q \setminus T\). Then, by using the additional condition \(q_{(l_1,l_2)} = 1\), the two expressions \(C_{l_1l_2l_3l_4}\) and \(C_{l_1l_2l_3l_5}\) turn out to be proportional. But we have two independent constants given by simpler expressions as the following iterated \(q\)-commutators \(Y_{l_1l_2l_3l_4}\) and \(Y_{l_1l_2l_3l_5}\) (c.f. (14)).

b) Let \(|T| = 3\), \(T = \{l_1, l_2, l_3\} \subset Q\) and let \(\{l_m\} = Q \setminus T\). Then, by using the additional condition \(q_{(l_1,l_2,l_3)} = 1\), the two expressions \(C_{l_1l_2l_3l_4}\) and \(C_{l_1l_2l_3l_5}\) turn out to be proportional. In this case we obtain one constant given by simpler expression

\[
[C_{l_1l_2l_3}, \epsilon_m] \cap \{l_m\} \subset Q
\]

where \(C_{l_1l_2l_3}\) is given by (29). Thus the space \(C_{(Q,T)}\) is one-dimensional.

Remark 11. According to Remark 10 for \(Q = \{l_1, l_2, l_3\}\), \((l_1 < l_2 < l_3)\) under the \(Q\)-cocycle condition, if we take the following three linearly independent vectors \(y_1, y_2, y_3 \in \ker (id - T_{2,1}^2 T_{3,2})\) given by:

\[
y_1 = e_{l_1l_2l_3} + q_{l_1l_2} q_{l_1l_3} e_{l_1l_2l_3}, \quad y_2 = e_{l_2l_1l_3} + q_{l_2l_1} q_{l_2l_3} e_{l_2l_1l_3}, \quad y_3 = e_{l_3l_1l_2} + q_{l_3l_1} q_{l_3l_2} e_{l_3l_1l_2},
\]

then their images \(x_i\) under the correspondence (24) in Remark 10 give the following three constants

\[
\begin{align*}
D_{l_1l_2l_3} &= (1 - q_{(l_1,l_3)}) Y_{l_1l_2l_3} + q_{l_1l_2} q_{l_1l_3} (1 - q_{l_1l_2}) Y_{l_1l_2l_3}, \\
D_{l_2l_1l_3} &= (1 - q_{(l_2,l_3)}) Y_{l_2l_1l_3} + q_{l_2l_1} q_{l_2l_3} (1 - q_{l_2l_3}) Y_{l_2l_1l_3}, \\
D_{l_3l_1l_2} &= (1 - q_{(l_3,l_1)}) Y_{l_3l_1l_2} + q_{l_3l_1} q_{l_3l_2} (1 - q_{l_3l_2}) Y_{l_3l_1l_2},
\end{align*}
\]

written in terms of \(q\)-iterated commutators (c.f. (14)). It is easy to check that all three constants above are proportional i.e \(D_{l_1l_2l_3} = q_{l_1l_2/l_1l_3} D_{l_2l_1l_3}\), \(D_{l_2l_1l_3} = q_{l_2l_1/l_1l_3} D_{l_3l_1l_2}\), \(D_{l_3l_1l_2} = q_{l_3l_1/l_1l_3} D_{l_1l_2l_3}\), hence the space of constants is one-dimensional. Therefore, we can take that a basic constant in \(C_{l_1l_2l_3}\) is given by \(D_{l_1l_2l_3} = (1 - q_{(l_1,l_3)}) Y_{l_1l_2l_3} + q_{l_1l_2} q_{l_1l_3} (1 - q_{l_1l_2}) Y_{l_1l_2l_3}\) (compare with (29)).

Similarly, for \(Q = \{l_1, l_2, l_3, l_4\}\), \((l_1 < l_2 < l_3 < l_4)\) under the \(Q\)-cocycle condition there are eight linearly independent vectors \(y_j \in \ker (id - T_{2,1}^2 T_{4,2})\) given by

\[
y_j = \left(id - T_{2,1}^2 T_{4,2} + (T_{2,1}^2 T_{4,2})^2\right) e_j
\]

for

\[
\begin{align*}
&j = l_1l_2l_3l_4; \quad l_1l_2l_4l_3; \quad l_2l_1l_3l_4; \quad l_2l_1l_4l_3; \quad l_3l_1l_2l_4; \quad l_3l_1l_4l_2; \quad l_4l_1l_2l_3; \quad l_4l_1l_3l_2.
\end{align*}
\]

Their images \(x_i\) under the correspondence (24) in Remark 10 give the
following two basic constants (written in terms of q-iterated commutators (c.f. (14))):

$$D_{l_1 l_2 l_3 l_4} = \xi_{l_1 l_2 l_3 l_4} Y_{l_1 l_2 l_3 l_4} + q_{l_1 l_2} q_{l_1 l_3} Y_{l_1 l_2 l_3 l_4} + q_{l_1 l_2} q_{l_1 l_4} Y_{l_1 l_2 l_3 l_4} + q_{l_1 l_2} q_{l_1 l_3} Y_{l_1 l_2 l_3 l_4}$$

$$D_{l_1 l_2 l_3 l_4} = q_{l_1 l_3} q_{l_1 l_4} Y_{l_1 l_2 l_3 l_4} + \xi_{l_1 l_2 l_3 l_4} Y_{l_1 l_2 l_3 l_4}$$

where $\xi_{i_1 i_2 i_3 i_4} := (1 - q_{i_1 i_2})(1 - q_{i_1 i_3})(1 - q_{i_1 i_4})(1 - q_{i_1 i_2 i_4})$.

Note that the last two basic constants are proportional respectively to the basic constants $C_{l_1 l_2 l_3 l_4}, C_{l_1 l_2 l_3 l_4}$.

4.2. Degenerate cases. Here we consider Q-cocycle conditions $\beta_Q = 0$ for some special Q of the following types:

- Case 1: $1 + q_{i_1} + \cdots + q_{i_1}^{m-1} = \lceil m \rceil_{q_{i_1}} = 0$, if $Q = i^m$ (c.f. (9)).
- Case 2: $q_{i_1}^{m-1} q_{i, j} = 1$, if $Q = i^m j$.
- Case 3: $q_{i_1} q_{i, j} q_{i, j} = -1$, if $Q = i^2 j^2$.
- Case 4: $q_{i_1}^2 q_{i_1, j} q_{i_1, j} q_{i_1, k} q_{i_1, l} = 1$, if $Q = i^2 j^2 k.

4.2.1. Basic constants in the weight subspaces B_{Q}^l, $l \in \mathcal{N}$, $n \geq 2$. Let $Q = l^m$. Then the matrix B_{Q}^l of ∂^Q in the monomial basis $\mathfrak{B}_{Q}^l = \{e_{i_1 \cdots i_l}\}$ has determinant $\det B_{Q}^l = \lceil m \rceil_{q_{i_1}}$, so the Q-cocycle condition is: $c_{Q}^l = \{\lceil m \rceil_{q_{i_1}} = 0\}$. If c_{Q}^l holds, then $C_{Q}^l = \mathbb{C}\{e_{i_1 \cdots i_l}\}$ i.e. $\dim C_{Q}^l = 1$, otherwise $C_{Q}^l = \{0\}$.

4.2.2. Basic constants in the weight subspaces B_{Q}^l, B_{Q}^l, $k \geq 2$. We shall elaborate only the case $Q = l^k l^2$, $l_1 < l_2$, $k \geq 2$. The matrix B_{Q}^l of ∂^Q w.r.t. the monomial basis $\mathfrak{B}_{Q}^l = \{e_{i_1 \cdots i_l}, e_{i_1 \cdots i_{l_2}}, \cdots, e_{i_2 \cdots i_l}\}$ has determinant

$$\det B_{Q}^l = \lceil k \rceil_{q_{i_1}} \prod_{i=1}^{k} (1 - q_{i_1 i_2} q_{i_1 i_2})$$

(c.f. formula (13) in [1, Section 6]), so the Q-cocycle condition is given by $c_{Q}^l = \{q_{i_1 i_2}^{k-1} q_{i_1 i_2} = 1, q_{i_1 i_2}^{i-1} q_{i_1 i_2} \neq 1, 1 \leq i \leq k - 1, [j]_{q_{i_1 i_2}} \neq 0\}$.
2 \leq j \leq k$. If the condition $c_{\ell_1 \ell_2}^{i}$ holds, then it is easy to check that the space $C_{\ell_1 \ell_2}^{i}$ is one-dimensional with the bases given by the iterated q-commutator $Y_{\ell_1 \ell_2}$. To illustrate this we take $k = 2$. Then $Q = l_1^2 l_2$ and the matrix $B_{t_1 l_1 l_2}$ of ∂^Q w.r.t. basis $\mathcal{B}_{t_1 l_1 l_2} = \{e_{t_1 l_1 l_2}, e_{t_1 l_2 l_1}, e_{t_2 l_1 l_1}\}$ is given by

$$B_{t_1 l_1 l_2} = \begin{pmatrix}
1 + q_{t_1 l_1} & q_{t_1 l_1} q_{t_1 l_2} & 0 \\
0 & 1 & q_{t_1 l_2} (1 + q_{t_1 l_1}) \\
q_{t_2 l_1}^2 & q_{t_2 l_1} & 1
\end{pmatrix}$$

and its determinant is equal to $\det B_{t_1 l_1 l_2} = (1 + q_{t_1 l_1}) (1 - q_{t_1 l_1} q_{t_1 l_2}) (1 - q_{t_1 l_1} q_{t_1 l_2})$. The nullspace of the matrix $B_{t_1 l_1 l_2}$ one obtains by solving the following system of equations:

$$
\begin{align*}
(1 + q_{t_1 l_1}) \alpha_{112} + q_{t_1 l_1} q_{t_1 l_2} \alpha_{121} &= 0 \\
\alpha_{121} + q_{t_1 l_2} (1 + q_{t_1 l_1}) \alpha_{211} &= 0 \\
q_{t_2 l_1}^2 \alpha_{112} + q_{t_2 l_1} \alpha_{121} + \alpha_{211} &= 0
\end{align*}
$$

If $q_{t_1 l_1} \neq -1$ we can take α_{211} as a free variable, then we get $\alpha_{112} = q_{t_1 l_1} q_{t_1 l_2} \alpha_{211}$, $\alpha_{121} = -q_{t_1 l_2} (1 + q_{t_1 l_1}) \alpha_{211}$. Hence

$$q_{t_1 l_1} q_{t_1 l_2}^2 e_{112} - q_{t_1 l_2} (1 + q_{t_1 l_1}) e_{121} + e_{211} = \left[[e_{t_2}, e_{t_1}] q_{t_1 l_2}, e_{t_1} \right] q_{t_1 l_2} q_{t_1 l_1}$$

$$= [Y_{\ell_2 l_1}, e_{t_1}] q_{t_1 l_2} q_{t_1 l_1} = Y_{\ell_2 l_1 l_1} = Y_{\ell_2 l_1}$$

(c.f. (14)) is a basic constant when $q_{t_1 l_1} q_{t_1 l_2} = 1$ or $q_{t_1 l_1} l_2 = 1$. On the other hand, in the case $q_{t_1 l_1} = -1$ we obtain $\alpha_{121} = 0$, so here we can take α_{112} as a free variable. Then we get $\alpha_{211} = -q_{t_1 l_1}^2 \alpha_{112}$. Hence

$$e_{112} - q_{t_1 l_1}^2 e_{211} = [e_{t_1 l_1}, e_{t_2}] q_{t_1 l_2}^2 = X_{t_1 l_1 l_2}$$

(c.f. (13)) is a basic constant if $q_{t_1 l_1} = -1$. Note that under the Q-cocycle condition

$$c_{\ell_1 l_2}^{i} = \left\{ q_{t_1 l_1} q_{t_1 l_2} = 1, q_{t_1 l_1} \neq 1, q_{t_1 l_1} \neq -1 \right\}$$

the space $C_{\ell_1 l_2}^{i}$ (of Q-constants) is one-dimensional, where the iterated q-commutator $Y_{\ell_2 l_1}$ is a basic constant. Similarly, we can show that the space $C_{\ell_1 l_2}^{i}$, $k \geq 2$ is one-dimensional with a basic constant $Y_{\ell_2 l_1}$.

Now in special cases $k = 2, 3$ we elaborate $(Q; T)$-constants.

(1) In case $Q = l_1^2 l_2$ we have two subcases $T = l_1^2$ and $T = l_1 l_2$, ($|T| = 2$).

a) Let $T = l_1^2$. Then, by using the additional condition $q_{t_1 l_1} = -1$, the basic constant $Y_{l_2 l_1}$ can be written as the simple q-commutator $X_{l_1 l_1 l_2} = [e_{t_1 l_1}, e_{t_2}] q_{t_1 l_1}^2$.

(Compare above given commutators $Y_{\ell_2 l_1}, X_{\ell_1 l_1 l_2}$. Note that
\[q_{i_1 i_2} q_{i_1, l_2} = 1 \text{ and } q_{i_1 i_1} = -1 \text{ imply } q_{i_1, l_2} = -1, \text{ so we can take } -q_{i_1 i_1}^2 = 1 / q_{i_1 i_1} q_{i_1 i_2}. \]

b) In the case \(T = l_1 l_2 \), where we use the additional condition \(q_{i_1, l_2} = 1 \), the basic constant \(Y_{i_2 l_2} \) simplifies to \([Y_{i_2 l_2}, e_{i_1}]_{q_{i_1 i_2}} \).
(Note that \(q_{i_1 i_1} q_{i_1, l_2} = 1 \) and \(q_{i_1, l_2} = 1 \) imply \(q_{i_1 i_1} = 1 \)).

(2) In case \(Q = l_1^3 l_2 \) we have four subcases \(T = l_1^3 \), \(T = l_2^1 \), \(T = l_2^3 l_2 \), \(T = l_1 l_2 \).

\begin{itemize}
 \item[a)] Let \(T = l_1^3 \). Then, by using the additional condition \(1 + q_{i_1 i_1} + q_{i_1 i_1}^2 = 0 \), the basic constant \(Y_{i_2 l_2} \) equals \(e_{i_2 l_1} (1 + q_{i_1 i_1} + q_{i_1 i_1}^2) e_{i_1} \) can be written as the simple \(q \)-commutator \(X_{i_1 i_1 i_1} = [e_{i_1 i_1 i_1}, e_{i_2}] q_{i_2 i_1} \).
(Note that \(1 + q_{i_1 i_1} + q_{i_1 i_1}^2 = 0 \) implies \(q_{i_1 i_1} = 1 \), so we can take \(q_{i_1 i_1}^2 = 1 / q_{i_1 i_1} q_{i_1 i_2} \).

 \item[b)] Let \(T = l_2^3 \). Then, by using the additional condition \(q_{i_1 i_1} = -1 \), the basic constant \(Y_{i_2 l_2} \) simplifies to \([Y_{i_2 l_2}, e_{i_1}]_{q_{i_1 i_2}} \).

 \item[c)] In the case \(T = l_2^3 l_2 \) with the additional condition \(q_{i_1 i_1} q_{i_1, l_2} = 1 \), the basic constant \(Y_{i_2 l_2} \) simplifies to \([Y_{i_2 l_2}, e_{i_1}]_{q_{i_1 i_2}} \).

 \item[d)] In the case \(T = l_1 l_2 \), where we use the additional condition \(q_{i_1, l_2} = 1 \), the basic constant \(Y_{i_2 l_2} \) simplifies to \([Y_{i_2 l_2}, e_{i_1}]_{q_{i_1 i_2}} \).
\end{itemize}

Similarly, we compute the basic constants in the weight subspaces \(B_{i_1 i_2} \), \(k \geq 2 \).

4.2.3. Basic constants in the weight subspaces \(B_{i_1 i_2} \), \(i_1, i_2 \in \mathcal{N}, i_1 \neq l_2 \). The matrix \(B_{i_1 i_2} \) of \(\partial^Q \) w.r.t to \(B_{i_1 i_2} = \{ e_{i_1 i_1 i_2 l_2}, e_{i_1 i_2 l_2 i_2}, e_{i_1 i_2 l_2 l_2}, e_{i_2 i_2 l_2 l_1}, e_{i_2 l_1 i_2 l_2}, e_{i_2 l_2 l_1} \} \) has determinant

\[
\begin{align*}
 \det B_{i_1 i_2} &= (1 + q_{i_1 i_1}) (1 + q_{i_2 l_2}) (1 - q_{i_1, l_2})^2 (1 - q_{i_1 i_1} q_{i_1, l_2}) \\
 &= (1 - q_{i_2 l_2} q_{i_1, l_2}) (1 + q_{i_1 i_1} q_{i_2 l_2} q_{i_1, l_2}).
\end{align*}
\]

Under the Q-cocycle condition \(c_{i_1 i_2} = \{ q_{i_1 i_1} q_{i_2 l_2} q_{i_1, l_2} = -1, q_{i_1, l_2} \neq 1, q_{i_1 i_2} q_{i_1, l_2} \neq 1, 1 + q_{i_1 i_2} q_{i_1, l_2} \neq 0, j = 1, 2 \} \) we obtain a basic constant

\[
C_{i_1 i_2} = q_{i_2 l_2} q_{i_1 i_1} q_{i_2 l_2} (1 - q_{i_1, l_2}) X^{i_1 i_1 i_2 l_2} - (1 + q_{i_1 i_1}) (1 + q_{i_2 l_2}) X^{i_1 i_2 l_2 i_1}
\]

\[
+ q_{i_1 i_1} q_{i_2 l_2} (1 + q_{i_1 i_1}) (1 - q_{i_1 i_1} q_{i_1, l_2}) e_{i_1 i_1 i_1 i_2}
+ q_{i_1 i_1} q_{i_1 i_1} (1 + q_{i_2 l_2}) (1 - q_{i_2 l_2} q_{i_1 i_1}) e_{i_2 i_2 i_2 i_2}
\]

and the space of \(Q \)-constants is one-dimensional. Now we elaborate \((Q; T) \)-constants.
(i) Let \(T = l_i^2, i \in \{1, 2\} \). Then, by using the additional condition
\(q_{i,i} = -1 \), the basic constant \(C_{l_i^2 l_2} \) simplifies to the iterated
\(q \)-commutator \(Y_{l_i l_i l_2}, \{i, j\} = \{1, 2\} \).

(ii) Let \(T = l_1 l_2 \). Then, by using the additional condition
\(q_{i,i} = 1 \), the basic constant \(C_{l_1 l_2} \) simplifies to the following product

\[Y_{l_1 l_1} \cdot Y_{l_2 l_2} \quad \text{or to} \quad \left[e_{l_1}, Y_{l_2 l_2}, q_{2,2} \right]_{q_{2,2}}^+, \quad \text{where} \quad [x, y]_q^+ = xy + qyx \quad \text{denote the well known} \ q\text{-anticommutator.} \]

(iii) Let \(T = l_i^2 l_j \quad \{i, j\} = \{1, 2\} \). Then, by using the additional condition
\(q_{i,i} q_{i,j} = 1 \), the basic constant \(C_{l_i^2 l_j} \) can be written

as the iterated \(q \)-commutator \(Y_{l_i l_i l_i l_j} \).

4.2.4. Basic constants in the weight subspaces \(B_{l_i^2 l_j} \), \(l_1, l_2, l_3 \in \mathcal{N} \),
\(l_1 \neq l_2 \neq l_3 \neq l_1 \). In this case the determinant of the matrix \(B_Q = B_{l_i^2 l_j} \)

is given by

\[
\det B_{l_i^2 l_j} = (1 + q_{l_1 l_1} q_{l_2 l_2} - 2(1 - q_{l_1 l_2}) (1 - q_{l_1 l_2}) (1 - q_{l_2 l_3})) \nonumber \\
(1 - q_{l_1 l_1} q_{l_1 l_2}) (1 - q_{l_1 l_2} q_{l_1 l_3}) (1 - q_{l_1 l_2} q_{l_1 l_3}) \nonumber \\
(1 - q_{l_1 l_1} q_{l_2 l_2} q_{l_3 l_3}) \nonumber
\]

Under the \(Q \)-cocycle condition \(C_{l_i^2 l_j} \), we obtain one-dimensional space

of \(Q \)-constants \(C_{l_i^2 l_j} = \mathbb{C} \{ C_{l_i^2 l_j} \} \) with the basis element

\[
C_{l_i^2 l_j} = q_{l_1 l_1} q_{l_2 l_2} (1 - q_{l_1 l_2}) (1 - q_{l_1 l_3}) (1 - q_{l_2 l_3}) \quad X^{l_1 l_1 l_2 l_3} \nonumber \\
+ q_{l_1 l_1} q_{l_2 l_2} (1 - q_{l_1 l_2}) q_{l_1 l_3} \quad X^{l_1 l_1 l_2} \nonumber \\
- q_{l_1 l_1} q_{l_1 l_3} (1 - q_{l_1 l_2}) (1 - q_{l_1 l_2} q_{l_1 l_3}) \quad X^{l_1 l_2 l_3} \nonumber \\
+ q_{l_1 l_1} q_{l_1 l_1} (1 - q_{l_1 l_2} q_{l_1 l_3}) \quad X^{l_1 l_2 l_3} \nonumber \\
+ (1 - q_{l_1 l_1} q_{l_2 l_2}) (1 - q_{l_1 l_2} q_{l_1 l_3}) \quad X^{l_1 l_2 l_3} \nonumber
\]

Now we elaborate \((Q; T)\)-constants.

(a) Let \(T = l_1 l_2 l_3 \). By using the additional condition \(q_{l_1 l_2 l_3} = 1 \),

the basic constant \(C_{l_1 l_2 l_3} \) can be written as the iterated \(q \)-

commutator \([C_{l_1 l_2 l_3}, e_{l_1}]_{q_{l_1 l_2} q_{l_1 l_3} q_{l_1 l_3}} \) (where \(C_{l_1 l_2 l_3} \) is given by (29)).

(b) Let \(T = l_i^2 l_j, j \in \{2, 3\} \). Then, by using the additional condition

\(q_{l_1 l_1} q_{l_1 l_j} = 1 \), the basic constant \(C_{l_i^2 l_j} \) simplifies to \(Y_{l_i l_i l_i l_j} \),

(\{j, k\} = \{2, 3\}).

(c) Let \(T = l_2 l_3 \). By using the additional condition \(q_{l_2 l_3} = 1 \), the

basic constant \(C_{l_2 l_3} \) simplifies to \(Y_{l_2 l_3 l_3} \).
Let $T = l_1l_2$, $j \in \{2, 3\}$. Then, by using the additional condition $q(l_1,l_2) = 1$, the basic constant $C_{l_1l_2k}$ still makes two independent constants $Y_{l_1l_1l_1}$ and $Y_{l_1l_1l_1}$, \{j,k\} = \{2,3\}.

(e) Let $T = l_1^2$. Then, by using the additional condition $q(l_1) = -1$, the basic constant $C_{l_1l_1l_1}$ still makes two independent constants $Y_{l_1l_1l_1}$ and $Y_{l_1l_1l_1}$.

5. The relationship between basic constants in generic and degenerated subspaces of the algebra B

In this section, by working under top cocycle condition, we will compute the dimension of the space C_Q of all constants in the weight subspace B_Q of B. To achieve this we shall make use of some notations from [3] and some considerations from [6] (c.f. Lemma 1.9.1).

Let $Q = \{l_1 \leq \cdots \leq l_n\} = \{k_1^{n_1}, \ldots, k_m^{n_m}, \ldots, k_p^{n_p}\}$ be a multiset of cardinality $n (= n_1 + \cdots + n_p)$. Then we define the submultisets Q_{km}, $(1 \leq m \leq p)$ by removing one copy of k_m from Q i.e $Q_{km} = Q \setminus \{k_m\} = \{k_1^{n_1}, \ldots, k_m^{n_m-1}, \ldots, k_p^{n_p}\}$. Further let \hat{Q}_{km} denote the set of all multiset permutations of the multiset Q_{km}.

Let us now assume that $a: \hat{Q} \to \mathbb{C}\setminus\{0\}$ and $b_{km}: \hat{Q}_{km} \to \mathbb{C}\setminus\{0\}$, $1 \leq m \leq p$ are functions (analogous to those in [3]) defined by:

\begin{align}
\text{(31)} & \quad a(j_1 \cdots j_n) = q_{jn_1} \cdots q_{jn_{n-1}}, \quad j_1 \cdots j_n \in \hat{Q}, \\
\text{(32)} & \quad b_{km}(j_1 \cdots \hat{k_m} \cdots j_n) = q_{kmjn} a(k_m j_1 \cdots \hat{k_m} \cdots j_n),
\end{align}

where $j_1 \cdots \hat{k_m} \cdots j_n \in \hat{Q}_{km}$ which are called (in [3]) commutation factors. As in Remark 4 we can rewrite (32) as follows

\begin{equation}
\text{(33)} \quad b_{km}(j_1 \cdots \hat{k_m} \cdots j_n) = q_{kmjn} q_{jn_1} \cdots q_{jnkm} \cdots q_{jn_{n-1}}.
\end{equation}

5.1. Singular orbits and the dimension of the space C_Q. For each $1 \leq i \leq n$, let $\langle t_{i,1} \rangle = \{id, t_{i,1}, (t_{i,1})^2, \ldots, (t_{i,1})^{n-1}\}$ be the cyclic subgroup of (the symmetric group) S_n generated by the cycle $t_{i,1} = (1 \, 2 \, \ldots \, i) \in S_n$ i.e

\begin{equation}
t_{i,1} = \begin{pmatrix}
1 & 2 & \cdots & i - 1 & i & i + 1 & \cdots & n \\
2 & 3 & \cdots & i & 1 & i + 1 & \cdots & n
\end{pmatrix}.
\end{equation}

Its set of inversions is given by $I(t_{i,1}) = \{(1,i),(2,i),\ldots,(i-1,i)\}$. Let us denote by $t_{1,i}$ the inverse of $t_{i,1}$ (i.e $t_{1,i} = (t_{i,1})^{-1}$). Then for each $j \in \hat{Q}$, $1 \leq i \leq n$ we have

\begin{equation}
e_{t_{i,1}j} = e_{j_{t_{i,1}(1)},\cdots,j_{t_{i,1}(n)}} (= e_{j_{t_{i,1}(1)}},\cdots,e_{j_{t_{i,1}(n)}})
\end{equation}
These orbits are in one by one correspondence to cyclic \([(j_1j_2 \ldots j_i)j_{i+1} \ldots j_n] \) (c.f. [6, Sections 1.8]). The \(\langle t_{i,1} \rangle \)-orbit on \(\mathcal{B}_Q \), generated by \(e_{j_1 \ldots j_n} \), \(j_1 \ldots j_n = j \in \hat{Q} \), we denote by

\[
\mathcal{B}_Q^{(j_1j_2 \ldots j_i)j_{i+1} \ldots j_n} := \text{span}_C \left\{ e_{t_{i,1}j}^\alpha \mid 0 \leq \alpha \leq i - 1 \right\}.
\]

These orbits are in one by one correspondence to cyclic \(t_{i,1} \)-equivalence classes \((j_1j_2 \ldots j_i)j_{i+1} \ldots j_n \) of the sequences \(j \in \hat{Q} \). Notice that

\[
T_{i,1} \left(e_{t_{i,1}j}^\alpha \right) = c_\alpha e_{t_{i,1}j + 1}^\alpha, \quad 0 \leq \alpha \leq i - 1 \quad \text{(see Remark 10), where}
\]

\[
c_0 = q_{j_1j_1}q_{j_1j_2}q_{j_1j_3} \cdots q_{j_1j_{i-1}} \quad (= a (j_1 \cdots j_i)),
\]

\[
c_1 = q_{j_{i-1}j_1}q_{j_{i-1}j_2}q_{j_{i-1}j_3} \cdots q_{j_{i-1}j_{i-2}},
\]

\[
c_2 = q_{j_{i-2}j_{i-1}}q_{j_{i-2}j_{i-2}}q_{j_{i-2}j_{i-3}} \cdots q_{j_{i-2}j_{i-3}},
\]

\[\vdots\]

\[
c_{i-2} = q_{j_2j_3}q_{j_2j_4}q_{j_2j_5} \cdots q_{j_2j_1},
\]

\[
c_{i-1} = q_{j_1j_2}q_{j_1j_3}q_{j_1j_4} \cdots q_{j_1j_i}.
\]

(Compare with \(c_k \), \(0 \leq k \leq b - a \) treated in [6]; here they are modified w.r.t the inverse of \(t_{a,b} \) for \(a = 1, b = i \). Hence \(T_{i,1} \mid \mathcal{B}_Q^{(j_1j_2 \ldots j_i)j_{i+1} \ldots j_n} \) is a cyclic operator such that

\[
\det \left(I - T_{i,1} \mid \mathcal{B}_Q^{(j_1j_2 \ldots j_i)j_{i+1} \ldots j_n} \right) = 1 - \prod_{0 \leq \alpha \leq i - 1} c_\alpha.
\]

Now it is easy to see that a \(\langle t_{i,1} \rangle \)-orbit on \(\mathcal{B}_Q \), \(|Q| = n \) is singular if

\[
1 - \prod_{0 \leq \alpha \leq i - 1} c_\alpha = 0
\]

and it is long singular when \(i = n \), where (35) reduces to

\[
1 - \prod_{1 \leq a \neq b \leq n} q_{a,b} = 0.
\]

The product runs over all \(n \cdot (n-1) \) pairs \((l, a) \) of elements from the multiset \(Q \).

Note that (35) represents the top cocycle condition (20). Similarly, in generic cases the appropriate top cocycle condition (27) is represented with (36), because all orbits are long in generic ones.

Assume now that \(\langle t_{i,2} \rangle \), \(2 \leq i \leq n \) be the cyclic subgroup of \(S_1 \times S_{n-1} \) generated by the cycle \(t_{i,2} = (23 \ldots i) \in S_1 \times S_{n-1} \) i.e

\[
t_{i,2} = \begin{pmatrix} 1 & 2 & 3 & \cdots & i-1 & i & i+1 & \cdots & n \\ 1 & 3 & 4 & \cdots & i & i+1 & \cdots & n \end{pmatrix}.
\]
The \(\langle t_{2,1}^2, t_{i,2} \rangle \)-orbit on \(B_Q \) we denote by

\[
B_Q^{j_1(j_2j_3\ldots j_i)j_{i+1}\ldots j_n} := \text{span}_C \left\{ e_{i,2}^{\beta} \mid 0 \leq \beta \leq i-2 \right\}.
\]

These orbits are in one by one correspondence to cyclic \(t_{i,2} \)-equivalence classes \(j_1(j_2j_3\ldots j_i)j_{i+1}\ldots j_n \) of the sequences \(j \in \hat{Q} \).

Then we have

\[
T_{2,1}^2 T_{i,2} \left(e_{i,2}^{\beta} \right) = d_{\beta} e_{i,2}^{\beta+i-2}, \quad 0 \leq \beta \leq i-2,
\]

where

\[
\begin{align*}
d_0 &= q(j_1,j_i)q_{j_2j_3}q_{j_4j_5} \ldots q_{j_{i-1}j_i}, \\
d_1 &= q(j_1,j_{i-1})q_{j_2j_3}q_{j_4j_5} \ldots q_{j_{i-1}j_{i-2}}, \\
d_2 &= q(j_1,j_{i-2})q_{j_2j_{i-1}}q_{j_4j_{i-2}}q_{j_{i-2}j_{i-3}} \ldots q_{j_{i-2}j_{i-3}}, \\
&\vdots \\
d_{i-3} &= q(j_1,j_3)q_{j_4j_5}q_{j_6j_7} \ldots q_{j_{i-2}j_{i-1}}, \\
d_{i-2} &= q(j_1,j_2)q_{j_3j_4}q_{j_5j_6} \ldots q_{j_{i-2}j_{i-1}}.
\end{align*}
\]

(Compare with (33)). Here we obtain

\[
det \left(I - T_{2,1}^2 T_{i,2} \left| B_Q^{j_1(j_2j_3\ldots j_i)j_{i+1}\ldots j_n} \right. \right) = 1 - \prod_{0 \leq \beta \leq i-2} d_{\beta}.
\]

Similarly as above a \(\langle t_{2,1}^2, t_{i,2} \rangle \)-orbit on \(B_Q \) is singular if

\[
(37) \quad 1 - \prod_{0 \leq \beta \leq i-2} d_{\beta} = 0
\]

and it is long singular when (37) reduces to (36).

Hence we can conclude that a \(\langle t_{i,1} \rangle \)-orbit resp. \(\langle t_{2,1}^2, t_{i,2} \rangle \)-orbit on \(B_Q \) is short singular when l.h.s. of (35) resp. l.h.s. of (37) is nontrivial divisor of l.h.s. of (36).

Let \(T_{k,1} \) denotes the matrix of the operator \(T_{k,1} \) resp. \(T_{2,1}^2 T_{k,2} \) in the monomial basis \(B_Q \), where I is identity matrix of \(T_{1,1} \). Then by using the considerations of Remark 10 we can conclude that under the top cocycle condition it is enough to study only the matrices \((I-T_{n,1}) \), \((I-T_{2,1}^2 T_{n,2}) \). If these matrices were transformed into a block-diagonal matrices, then the number of blocks in a block-diagonal matrix corresponds to the number of distinct singular orbits on \(B_Q \).

Let

\[
\begin{align*}
\chi_1 &= \text{the number of distinct singular } \langle t_{n,1} \rangle \text{-orbits on } B_Q, \\
\chi_2 &= \text{the number of distinct singular } \langle t_{2,1}^2, t_{n,2} \rangle \text{-orbits on } B_Q.
\end{align*}
\]

Then by applying (25) we have that the dimension of \(C_Q \) can be calculated by the formula:

\[
(38) \quad \dim C_Q = \chi_2 - \chi_1.
\]
Now we are going to apply the Frønsdal’s approach in calculating the dimensions of \(C_Q \) depending on the top cocycle condition (c.f. [3, 3.2.5]). Notice that in that paper all distinct singular orbits on \(B_Q \) are examined, as well as on the weight subspaces \(B_{Q_{km}}, 1 \leq m \leq p \). Here it is necessary that \(\chi \) resp. \(\chi_{km} \) denotes the number of distinct singular orbits on \(B_Q \) resp. on \(B_{Q_{km}}, 1 \leq m \leq p \) under top cocycle condition. Then

\[
\dim C_Q = \sum_{1 \leq m \leq p} \chi_{km} - \chi
\]

where these numbers are

\[
\chi = \frac{|Q|}{n} = \frac{(n-1)!}{n_1! \cdots n_p!}, \quad \chi_{km} = \frac{n_m \cdot (n-2)!}{n_1! \cdots n_p!}, \quad \dim C_Q = \frac{(n-2)!}{n_1! \cdots n_p!}
\]

when all orbits are long singular. Particulary, if \(Q \) is set (i.e \(n_m = 1 \), for all \(m \)), then all orbits are long, thus

\[
\dim C_Q = n \cdot (n-2)! - (n-1)! = (n-2)!.\]

In the general case determining the dimension of \(C_Q \) in degenerated cases is more complicated, because some singular orbits can be short. In the following examples we shall determine \(\dim C_Q \) for some multisets of cardinality \(n \) depending on the numbers of distinct singular orbits on \(B_Q \) and on \(B_{Q_{km}} \). Hence here we will use the Frønsdal’s approach, where we first assume that \(l_1, l_2, l_3 \in \mathbb{N}, l_1 \neq l_2 \neq l_3 \neq l_1 \) and \(n \geq 2 \).

Example 12. Let \(Q = l_1^n \). Then we have one short orbit on \(B_{Q_{l_1}} \) but also on \(B_{Q_{l_1}^{-1}} \). The short orbit on \(B_{Q_{l_1}} \) is singular when \(1 - q_{l_1}^{-n} = 0 \) and the short orbit on \(B_{Q_{l_1}^{-1}} \) is singular when \(1 - q_{l_1}^{-n} = 0 \). By applying the well known formula:

\[
1 - q^k = (1-q)[k]_q, \quad \text{(where } [k]_q = \sum_{i=0}^{k-1} q^i \text{ and } k \geq 1,\)
\]

on the factors \(1 - q_{l_1}^{-n} = (1 - q_{l_1})[n-1]_{q_{l_1}}, \ 1 - q_{l_1}^{-n} = (1 - q_{l_1})[n]_{q_{l_1}} \) is obtained:

- if \(1 - q_{l_1} = 0 \), then both orbits are singular (\(\chi = \chi_{l_1} = 1 \)), so \(\dim C_{Q_{l_1}} = 0 \);
- if \([n-1]_{q_{l_1}} = 0 \) then the orbit on \(B_{Q_{l_1}} \) is singular, but the orbit on \(B_{Q_{l_1}^{-1}} \) is nonsingular (\(\chi = 1, \chi_{l_1} = 0 \)). Hence \(\dim C_{Q_{l_1}} = -1 \);
- if \([n]_{q_{l_1}} = 0 \) then the orbit on \(B_{Q_{l_1}} \) is nonsingular, but the orbit on \(B_{Q_{l_1}^{-1}} \) is singular. Hence \(\chi = 0, \chi_{l_1} = 1 \) and \(\dim C_{Q_{l_1}} = 1 \).

Thus \(\dim C_{Q_{l_1}} = 1 \) when \([n]_{q_{l_1}} = 0 \) (c.f. 4.2.1).
Example 13. Let $Q = l_1^{n-1}l_2$. Then we have one long orbit on $B_{l_1^{n-1}l_2}$, but also on $B_{l_1^{n-2}l_2}$ and one short orbit on $B_{l_1^n}$. The long orbits are singular when $1 - \left(q_{i_1i_2}^{n-2}q_{i_1,i_2} \right)^n = 0$ or by applying (40) when

$$1 - q_{i_1i_2}^{n-2}q_{i_1,i_2} = 0 \quad \text{or} \quad \sum_{0 \leq i \leq n-2} \left(q_{i_1i_2}^{n-2}q_{i_1,i_2} \right)^i = 0.$$

The short orbit is singular when $1 - q_{i_1i_2}^{n-2}q_{i_1,i_2} = 0$. So we can conclude $\dim C_{l_1^{n-1}l_2} = 1$ when all orbits are singular i.e if $1 - q_{i_1i_2}^{n-2}q_{i_1,i_2} = 0$ (compare with 4.2.2).

On the other hand $\dim C_{l_1^{n-1}l_2} = 0$ when the short orbit is nonsingular.

Example 14. Let $Q = l_1^{n-2}l_2^2$. Depending on parity of $n-2$ we distinguish two cases: (1) $n-2 = 2k$ and (2) $n-2 = 2k+1$ for all $k \geq 0$. In the first case we have the multiset $Q = l_1^{2k}l_2^2$ of the cardinality $2k + 2$ ($k \geq 0$). Hence on $B_{l_1^{2k}l_2}$ there are $k + 1$ orbits, one of them short. We have k orbits on $B_{l_1^{2k-1}l_2}$ and one orbit on $B_{l_1^{2k+1}l_2}$, all long. The long orbits are singular when $1 - q_{i_1i_2}^{k(2k-1)}q_{i_2,i_2}q_{i_1,i_2}^{2k} = 0$ or $1 + q_{i_1i_2}^{k(2k-1)}q_{i_2,i_2}q_{i_1,i_2}^{2k} = 0$ and the short orbit is singular when $1 - q_{i_1i_2}^{k(2k-1)}q_{i_2,i_2}q_{i_1,i_2}^{2k} = 0$. If all orbits are singular then by applying (39) we obtain $\dim C_{l_1^{2k}l_2} = k + 1 - (k + 1) = 0$. The space $C_{l_1^{2k}l_2}$ is nonzero only in the case when the short orbit is nonsingular. Here we have $\dim C_{l_1^{2k}l_2} = k + 1 - k = 1$ when the top cocycle condition $1 + q_{i_1i_2}^{k(2k-1)}q_{i_2,i_2}q_{i_1,i_2}^{2k} = 0$ holds.

In the second case we have the multiset $Q = l_1^{2k+1}l_2^2$ of the cardinality $2k + 3$ ($k \geq 0$). Here we get: $k + 1$ long orbits on $B_{l_1^{2k+1}l_2}$, $k + 1$ orbits, one of them short on $B_{l_1^{2k}l_2}$ and one long orbit on $B_{l_1^{2k+1}l_2}$.

The long orbits are singular when $1 - q_{i_1i_2}^{k(2k+1)}q_{i_2,i_2}q_{i_1,i_2}^{2k+1} = 0$ or $1 + q_{i_1i_2}^{k(2k+1)}q_{i_2,i_2}q_{i_1,i_2}^{2k+1} = 0$ and the short orbit is singular when $1 - q_{i_1i_2}^{k(2k+1)}q_{i_2,i_2}q_{i_1,i_2}^{2k+1} = 0$. $\dim C_{l_1^{2k+1}l_2} = k + 2 - k - 1 = 1$ when all orbits are singular. It can be easily to seen that the top cocycle condition is represent by $1 - q_{i_1i_2}^{k(2k+1)}q_{i_2,i_2}q_{i_1,i_2}^{2k+1} = 0$ and the space $C_{l_1^{2k+1}l_2}$ is zero when the short orbit is nonsingular. We can now conclude: $\dim C_{l_1^{n-2}l_2} = 1$ when $1 + (-1)^{n-2}q_{i_1i_2}^{(n-2)}q_{i_2,i_2}q_{i_1,i_2}^{n-2} = 0$ (compare with 4.2.3). Here we have used:

$$k(2k-1) = \frac{2k(2k-1)}{2} = \binom{2k}{2}; \quad k(2k+1) = \frac{(2k+1)(2k)}{2} = \binom{2k+1}{2}.$$
Example 15. In the case $Q = t_1^{n-2}t_2t_3$ all orbits are long. They are singular when

$$1 - q_{1t_1}^{(n-2)(n-3)}q_{1t_2}^{n-2}q_{1t_3}^{n-2}q_{t_2t_3} = 0.$$

We have $\chi = n - 1$, $\chi t_1 = n - 2$, $\chi t_2 = \chi t_3 = 1$, hence $\dim C_{t_1^{n-2}t_2t_3} = 1$. Compare with 4.2.4.

Note that (36) represents ‘the generic top cocycle condition’. On the other hand, by a certain specialization procedure from (36) we can obtain the appropriate ‘degenerate top cocycle condition’ or the values of parameters q_{ij}’s for which the space of all constants is zero (c.f. examples 12–15). Therefore, this leads us to the conclusion that ‘the degenerate top cocycle condition’ can be constructed from some ‘generic top cocycle condition’. Thus the basic constants in degenerated B_Q’s can be constructed from those in generic ones.

In accordance with that we can deduce that the fundamental problem for finding the space of all constants in algebra B can be reduced to the problem of determining the space of all constants belonging to generic weight subspace B_Q depending only on the top cocycle condition.

References

