On the torsion group of elliptic curves induced by \(D(4)\)-triples

Andrej Dujella and Miljen Mikić

Abstract

A \(D(4)\)-\(m\)-tuple is a set of \(m\) integers such that the product of any two of them increased by 4 is a perfect square. A problem of extendibility of \(D(4)\)-\(m\)-tuples is closely connected with the properties of elliptic curves associated with them. In this paper we prove that the torsion group of an elliptic curve associated with a \(D(4)\)-triple can be either \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}\) or \(\mathbb{Z}/6\mathbb{Z}\), except for the \(D(4)\)-triple \((-1, 3, 4)\) when the torsion group is \(\mathbb{Z}/4\mathbb{Z}\).

Keywords: \(D(4)\)-triples, elliptic curves, torsion group

Mathematics Subject Classification: (2010) 11G05

1 Introduction

Let \(n\) be a given nonzero integer. A set of \(m\) nonzero integers \(\{a_1, a_2, \ldots, a_m\}\) is called a \(D(n)\)-\(m\)-tuple (or a Diophantine \(m\)-tuple with the property \(D(n)\)) if \(a_i a_j + n\) is a perfect square for all \(1 \leq i < j \leq m\). Diophantus found the \(D(256)\)-quadruple \(\{1, 33, 68, 105\}\), while the first \(D(1)\)-quadruple, the set \(\{1, 3, 8, 120\}\), was found by Fermat (see [1], [2]).

One of the most interesting questions in the study of \(D(n)\)-\(m\)-tuples is how large these sets can be. In this paper we will examine sets with the property \(D(4)\). Mohanty and Ramasamy [17] were first to achieve a significant result on the nonextendibility of \(D(4)\)-\(m\)-tuples. They proved that a \(D(4)\)-quadruple \(\{1, 5, 12, 96\}\) cannot be extended to a \(D(4)\)-quintuple. Kedlaya [14] later proved that if \(\{1, 5, 12, d\}\) is a \(D(4)\)-quadruple, then \(d\) has to be 96. Dujella and Ramasamy [9] generalized this result to the parametric family of \(D(4)\)-quadruples \(\{F_{2k}, 5F_{2k}, 4F_{2k+2}, 4L_{2k}F_{4k+2}\}\) involving Fibonacci and Lucas numbers. Other generalization to a two-parametric family of \(D(4)\)-triples can be found in [13]. Dujella [6] proved that there does not exist a
$D(1)$-sextuple and that there are only finitely many $D(1)$-quintuples. By observing congruences modulo 8, it is not hard to conclude that a $D(4)$-m-tuple can contain at most two odd numbers (see [9, Lemma 1]). Thus, the results from [6] imply that there does not exist a $D(4)$-8-tuple and that there are only finitely many $D(4)$-7-tuples. Filipin [10, 11] significantly improved these results by proving that there does not exist a $D(4)$-sextuple and that there are only finitely many $D(4)$-quintuples.

Let $\{a, b, c\}$ be a $D(4)$-triple. Then there exist nonnegative integers r, s, t such that

$$ab + 4 = r^2, \quad ac + 4 = s^2, \quad bc + 4 = t^2. \tag{1}$$

In order to extend this triple to a quadruple, we have to solve the system

$$ax + 4 = \square, \quad bx + 4 = \square, \quad cx + 4 = \square. \tag{2}$$

We assign to the system (2) the elliptic curve

$$E : y^2 = (ax + 4)(bx + 4)(cx + 4). \tag{3}$$

The purpose of this paper is to examine possible forms of torsion groups of elliptic curves obtained in this manner. Additional motivation for this paper is a gap found in the proof of [4, Lemma 1] concerning torsion groups of elliptic curves induced by $D(1)$-triples. Namely, if $\{a', b', c'\}$ is a $D(1)$-triple, then $\{2a', 2b', 2c'\}$ is a $D(4)$-triple. Thus, the proof of Lemma 2 in present paper also provides a valid proof of [4, Lemma 1].

2 Torsion group of E

The coordinate transformation

$$x \mapsto \frac{x}{abc}, \quad y \mapsto \frac{y}{abc}$$

applied on the curve E leads to the elliptic curve

$$E' : y^2 = (x + 4bc)(x + 4ac)(x + 4ab).$$

There are three rational points on E' of order 2:

$$A' = (-4bc, 0), \quad B' = (-4ac, 0), \quad C' = (-4ab, 0),$$

and also other obvious rational points

$$P' = (0, 8abc), \quad S' = (16, 8rst).$$
It is not so obvious, but it is easy to verify that $S' \in 2E'(\mathbb{Q})$. Namely, $S' = 2R'$, where

$$R' = (4rs + 4rt + 4st + 16(r + s)(r + t)(s + t)).$$

In this section we will first examine one special case and after that we may assume without the loss of generality that a, b, c are positive integers such that $a < b < c$. Since $\{-a, -b, -c\}$ induces the same curve as $\{a, b, c\}$, a problem may arise only when there are mixed signs. It is easily seen that the only such possible $D(4)$-triple is $\{-1, 3, 4\}$ (and the equivalent one $\{-4, -3, 1\}$). The elliptic curve associated with this $D(4)$-triple has rank 0 and the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. In this special case $B' \in 2E'(\mathbb{Q})$, more precisely $B' = 2P'$, so the point P' is of order 4. Note that in this case the point R' is also of order 4 since $R' = P' + A'$ and thus $2R' = 2P'$.

Thus, we assume from now on that a, b, c are positive integers such that $a < b < c$.

Lemma 1. If $\{a, b, c\}$ is $D(4)$-triple, then $c = a + b + 2r$ or $c > ab + a + b + 1 > ab$.

Proof. By [5, Lemma 3], there exists an integer

$$e = 4(a + b + c) + 2(abc - rst) \quad (4)$$

and nonnegative integers x, y, z such that

$$ae + 16 = x^2, \quad (5)$$

$$be + 16 = y^2, \quad (6)$$

$$ce + 16 = z^2 \quad (7)$$

and $c = a + b + \frac{t}{4} + \frac{1}{8}(abe + rxy)$. From (7), it follows that $e \geq 0$ (the case $e = -1$ implies $c \leq 16$, but the only such $D(4)$-triple $\{1, 5, 12\}$ does not satisfy (5) and (6)). For $e = 0$ we get $c = a + b + 2r$, while for $e \geq 1$ we have $c > \frac{1}{4}abe + a + b + \frac{5}{3}$. By observing congruences modulo 8, we can easily prove that at most two of the integers a, b, c are odd, which implies that $abc - rst$ is even. Hence, from (4) we conclude that $e \equiv 0 \pmod{4}$. It follows $e \geq 4$ and thus $c > ab + a + b + 1$. \hfill \Box

Remark 1. Filipin (see [12, Lemma 4]) proved that $c = a + b + 2r$ or $c > \frac{1}{4}abe$. Lemma 1 may be considered as a slight improvement of that result.
Remark 2. Lemma 1 implies $c \geq a + b + 2r$. Indeed, the inequality $ab + a + b + 1 \geq a + b + 2r$ is equivalent to $(r - 3)(r + 1) \geq 0$, and this is satisfied for all $D(4)$-triples with positive elements.

Remark 3. The statement of Lemma 1 is sharp in the sense that the inequality $c > ab$ cannot be replaced by $c > (1 + \varepsilon)ab$ for any fixed $\varepsilon > 0$. Indeed, for an integer $k \geq 3$, if we put $a = k^2 - 4$, $b = k^2 + 2k - 3$, $c = k^4 + 2k^3 - 3k^2 - 4k$, then $\{a, b, c\}$ is a $D(4)$-triple and \(\lim_{k \to \infty} \frac{c}{ab} = 1 \).

In the next lemma we show that E' cannot have a point of order 4. We follow the strategy of the proof of an analogous result for $D(1)$-triples [4, Lemma 1]. However, we have noted a serious gap in the proof of [4, Lemma 1]. Namely, [4, formula (7)] should be \((\beta^2 - 1)^2 = b(4c - a^2b - 2a(1 + \beta^2)) \), instead of \((\beta^2 - 1)^2 = b(4c - a^2b - 2a(1 + \beta^2)) \), so later arguments are not accurate in the case $\beta \neq 1$. Here we will prove more general result, but by taking a, b, c to be even, in the same time we fill the mentioned gap in the proof of [4, Lemma 1].

Lemma 2. $A', B', C' \notin 2E'(\mathbb{Q})$

Proof. If $A' \in 2E'(\mathbb{Q})$, then the 2-descent Proposition [15, 4.2, p.85] implies that $c(a - b)$ is a square. But $c(a - b) < 0$, a contradiction. Similarly, if $C' \in 2E'(\mathbb{Q})$, then $\{a, b, c\}$ is a $D(4)$-triple where $a < b < c$

Assume first that $c = a + b + 2r$. From (8) and (9), we get that $a = kx^2$, $c - b = ky^2$, $b = lz^2$, $c - a = lu^2$, where k, l, x, y, z, u are positive integers. We have $c = kx^2 + lu^2 = ky^2 + lz^2$, and from $c = a + b + 2r$ we get

\[2r = k(y^2 - x^2) = l(u^2 - z^2). \]

By squaring (10), we obtain

\[4r^2 = 16 + 4ab = 16 + 4klxz^2 = k^2(y^2 - x^2)^2 = l^2(u^2 - z^2)^2, \]

which implies that $k \in \{1, 2, 4\}$ and $l \in \{1, 2, 4\}$. Since kl is not a perfect square (otherwise $(2r)^2 = 16 + (2xz\sqrt{kl})^2$ which implies $2r = 5$), we may
take without loss of generality $k = 1, l = 2$ or $k = 2, l = 4$. For $k = 1, l = 2$, we have $4r^2 = 16 + 8x^2z^2$, which implies $r^2 = 4 + 2x^2z^2$, which leads to the conclusion that r is even and xz is even. Therefore, $r^2 \equiv 4 \pmod{8}$ and $r \equiv 2 \pmod{4}$. But from $2r = 2(u^2 - z^2)$ we conclude $u^2 - z^2 \equiv 2 \pmod{4}$, and that is impossible. If $k = 2, l = 4$, then $4r^2 = 16 + 32x^2z^2$, which implies $r^2 = 4 + 8x^2z^2$, thus $r^2 \equiv 4 \pmod{8}$ and $r \equiv 2 \pmod{4}$. But from $2r = 2(y^2 - x^2)$ we conclude $y^2 - x^2 \equiv 2 \pmod{4}$, and that is impossible.

Assume now that $c > ab + a + b + 1 > ab$.

Let us write the conditions (8) and (9) in the form

\begin{align*}
ac - ab &= s^2 - r^2 = (s - \alpha)^2, \\
bc - ab &= t^2 - r^2 = (t - \beta)^2,
\end{align*}

where $0 < \alpha < s$, $0 < \beta < t$. Then we have

\[r^2 = 2s\alpha - \alpha^2 = 2t\beta - \beta^2. \tag{13} \]

From (13) we get

\[4(bc + 4)\beta^2 = (ab + 4 + \beta^2)^2 \]

and

\[(\beta^2 - 4)^2 = b(4c\beta^2 - a^2b - 2a(4 + \beta^2)). \tag{14} \]

From (14) we conclude that either $\beta = 1$ or $\beta = 2$ or $\beta^2 \geq \sqrt{b} + 4$.

If $\beta = 1$, then

\[b(4c - a^2b - 10a) = 9 \tag{15} \]

which implies $b \mid 9$, but that is possible only for $b = 9$ (there are no $D(4)$-triples with $b < 4$). This implies $a = 5$, but (15) then gives $c = 69$ and \{5, 9, 69\} is not a $D(4)$-triple.

If $\beta = 2$, then from (14) we find that

\[c = \frac{a^2b + 16a}{16}. \tag{16} \]

Now we have

\[s^2 = ac + 4 = \frac{1}{16}(a^3b + 16a^2 + 64) = \frac{1}{16}(a^2r^2 + 12a^2 + 64). \]

Hence $s^2 > \left(\frac{a}{4}\right)^2$ and $s^2 < \left(\frac{ar^2 + 8}{4}\right)^2$. Therefore we have to consider several cases:
1. \(s^2 = \left(\frac{ar + n}{4} \right)^2 \), where \(n \) is odd. That is equivalent to

\[
2a(rn - 6a) = 64 - n^2.
\]

(17)

The left hand side of (17) is even and the right hand side is odd, a contradiction.

2. \(s^2 = \left(\frac{ar + 2}{4} \right)^2 \), or equivalently \(a(r - 3a) = 15 \). The cases \(a \leq 3 \) and (16) imply that \(c < b \). The case \(a = 5 \) gives the triple \(\{5, 64, 105\} \) that does not satisfy \(c > ab \) (\(c \) equals \(a + b + 2r \)), and \(a = 15 \) leads to \(15b + 4 = 46 \) which has no integer solutions.

3. \(s^2 = \left(\frac{ar + 4}{4} \right)^2 \), or equivalently \(a(2r - 3a) = 12 \). We conclude that \(a \) must be even and we get triples: \(\{2, 16, 6\} \) (with \(c < b \)) and \(\{6, 16, 42\} \) (with \(c = a + b + 2r \)), so we can eliminate this case.

4. \(s^2 = \left(\frac{ar + 6}{4} \right)^2 \) is equivalent to \(3a(r - a) = 7 \), which is clearly impossible.

Thus, we may assume that \(\beta^2 \geq \sqrt{b} + 4 \), which implies

\[
\beta > \max\{\sqrt{b}, 2\}
\]

(18)

The function \(f(\beta) = t^2 - (t - \beta)^2 \) is increasing for \(0 < \beta < t \). Thus we have

\[
ab = t^2 - (t - \beta)^2 - 4 > 2t \sqrt{\beta} - \sqrt{\beta} - 4 > 2\sqrt{bc} \sqrt{\beta} - \sqrt{\beta} - 4,
\]

which implies \(ab > \sqrt{bc} \sqrt{\beta} \), because \(\sqrt{\beta} (\sqrt{\alpha} - 1) > 4 \) (since \(b \geq 4 \) and \(c \geq 12 \), which follows from the fact that \(\{3, 4, 15\} \) and \(\{1, 5, 12\} \) are \(D(4)\)-triples with smallest \(b \) and \(c \) respectively). This further gives

\[
c < a^2 \sqrt{b}.
\]

(19)

We will use (4) to define the integer \(d_- \) as

\[
d_- = \frac{e}{4} = a + b + c + \frac{abc - rst}{2}
\]

Then \(d_- \neq 0 \) (since \(c \neq a + b + 2r \)) and \(\{a, b, c, d_-\} \) is a \(D(4)\)-quadruple. In particular,

\[
ad_- + 4 = \left(\frac{rs - at}{2} \right)^2.
\]

(20)

Moreover,

\[
c = a + b + d_- + \frac{1}{2} (abd_- + \sqrt{(ab + 4)(ad_- + 4)(bd_- + 4)}) > abd_- \]

(21)
By comparing this with (19), we get
\[d_0 < \frac{a}{\sqrt{b}}. \]
(22)

Therefore, we have \(d_0 < a < b \) which implies that \(b \) is the largest element in the \(D(4) \)-triple \(\{a, b, d_0\} \). Thus, by Remark 2, \(b \geq a + d_0 + 2\sqrt{ad_0} + 4 \) or equivalently \(d_0 \leq a + b - 2r \). Let us define also
\[c' = a + b + d_0 + \frac{1}{2}(abd_0 - \sqrt{(ab + 4)(ad_0 + 4)(bd_0 + 4)}). \]

We have
\[cc' = (a + b + d_0 + \frac{1}{2}abd_0)^2 - \frac{1}{4}(ab + 4)(ad_0 + 4)(bd_0 + 4) \]
\[= (a + b + d_0)^2 - 4ab - 4ad_0 - 4bd_0 - 16 \]
\[= (a + b - d_0)^2 - 4r^2 = (a + b + 2r - d_0)(a + b - 2r - d_0) \geq 0. \]

This implies
\[c < 2(a + b + d_0 + \frac{1}{2}abd_0) < 4b + abd_0 < 2abd_0. \]
(23)

(we use here \(ad_0 > 4 \) which is true because \(\{a, d_0\} \) is a \(D(4) \)-pair). Let us denote \(p = \frac{rs - at}{2} \). Then \(p > 0 \) and, by (20), we have \(ad_0 + 4 = p^2 \). In order to estimate the size of \(p \), we also define \(p' = \frac{rs + at}{2} \). Then
\[pp' = \frac{1}{4}(a^2bc + 4ac + 4ab + 16 - a^2bc - 4a^2) = a(b + c - a) + 4, \]
and
\[p < \frac{2(a + b)}{2at} = \frac{c + b}{\sqrt{bc}} = \frac{\sqrt{c}}{\sqrt{b}} + \frac{\sqrt{b}}{\sqrt{c}}. \]
\[p > \frac{2(ac + 4)}{2rs} = \frac{s}{r}. \]

Furthermore, we have
\[\frac{\sqrt{c}}{\sqrt{b}} - \frac{s}{r} = \frac{r}{r\sqrt{b}}(r\sqrt{c} - s\sqrt{b}) = \frac{4c - 4b}{r\sqrt{b}(r\sqrt{c} + s\sqrt{b})} < \frac{4c}{2rsb} < \frac{2\sqrt{c}}{ab\sqrt{b}}, \]
and thus
\[p > \frac{\sqrt{c}}{\sqrt{b}} - \frac{2\sqrt{c}}{ab\sqrt{b}}, \]
(24)
The inequality (19) implies that \(c < \frac{ab^2}{\sqrt{b}} \), and this is equivalent to

\[
\frac{\sqrt{b}}{\sqrt{c}} > \frac{2\sqrt{c}}{ab\sqrt{b}}
\]

which gives

\[
p > \frac{\sqrt{c}}{\sqrt{b}} - \frac{\sqrt{b}}{\sqrt{c}} \quad (25)
\]

By comparing both estimates for \(p \), we get

\[
\left| p - \frac{\sqrt{c}}{\sqrt{b}} \right| < \frac{\sqrt{b}}{\sqrt{c}} \quad (26)
\]

Let us now define an integer \(\alpha \) by

\[
2d_\beta = p + \alpha.
\]

Assume that \(\alpha = 0 \). Then (20) implies that \(d_\beta(4\beta^2d_\beta - a) = 4 \), thus \(d_\beta \in \{1, 2, 4\} \). We have three cases:

1. \(d_\beta = 1 \), which implies \(2\beta = p \). With this assumption, (12) gives

\[
r^2 + \frac{p^2}{4} = tp \quad (27)
\]

while \(c \) satisfies the inequalities

\[
ab < ab + a + b + 1 < c < ab + 2a + 2b + 2 < ab + 4b < 2ab
\]

(see Lemma 1 and (23) with \(d_\beta = 1 \)). The left hand side of (27) is

\[
< ab + 4 + \frac{c^2 + 2bc + b^2}{4bc} < ab + 4 + \frac{a}{4} + 1 + \frac{1}{2} + \frac{1}{4a} < ab + \frac{a}{4} + 6.
\]

On the other hand, by (24), the right hand side of (27) is

\[
> \sqrt{bc} \left(\frac{\sqrt{c}}{\sqrt{b}} - \frac{2\sqrt{c}}{ab\sqrt{b}} \right) = c - \frac{2c}{ab} > ab + a + b + 1 - 4 = ab + a + b - 3.
\]

By comparing these two estimates for (27), we get

\[
b + \frac{3}{4}a < 9,
\]

but this is in contradiction with \(b \geq 12 \) (\(b \) is the largest element in the \(D(4) \)-triple \(\{d_\beta, a, b\} \)).

We treat similarly the other two cases.
2. $d_- = 2$, which implies $4\beta = p$, and this leads to
\[\frac{b}{2} + \frac{3}{8}a < 8, \]
which is in contradiction with $b \geq 16$ ($D(4)$-triple of the form $\{2, a, b\}$ with the smallest b is $\{2, 6, 16\}$).

3. $d_- = 4$ is equivalent to $8\beta = p$, which leads to
\[\frac{b}{4} + \frac{3}{16}a < 8, \]
but the only $D(4)$-triple of the form $\{4, a, b\}$ with $b < 35$ is $\{4, 8, 24\}$, which does not satisfy (22), so we have a contradiction here as well.

Therefore, we may now assume that $\alpha \neq 0$. We will estimate $2d_-t\beta$ and compare it with c. First we will prove
\[\beta^2 < \frac{a^2b}{c}. \tag{28} \]
Since $\beta < t$, and the case $\beta = t - 1$ gives $b(c - a) = 1$, which is impossible, we conclude that $t \geq \beta + 2$. This implies $t\beta \geq \beta^2 + 2\beta$, and $ab - t\beta \geq 2\beta - 4 > 0$ because of (18). Hence, we get $t\beta < ab$, and this clearly implies (28).

Therefore,
\[0 < d_- \beta^2 < \frac{d_-a^2b}{c} < a. \]
From $2t\beta = r^2 + \beta^2 > ab + 4$, we get $2d_-t\beta > abd_- + 4d_-$. On the other hand,
\[d_- \beta^2 < \frac{d_-a^2b}{c} \iff 2d_-t\beta < abd_- + 4d_- + \frac{d_-a^2b}{c} < abd_- + 4d_- + a. \]
By combining these two estimates, we get
\[abd_- + 4d_- < 2d_-t\beta < abd_- + 4d_- + a. \tag{29} \]
By comparing (29) with (21) and (23), we conclude that
\[|2d_-t\beta - c| < 4b. \tag{30} \]
By combining the estimate (26) for p with the trivial estimate for α, namely $|\alpha| \geq 1$, we get
\[\left| 2d_-\beta - \frac{\sqrt{c}}{\sqrt{b}} \right| = \left| p + \alpha - \frac{\sqrt{c}}{\sqrt{b}} \right| \geq 1 - \frac{\sqrt{b}}{\sqrt{c}}. \]
Note that $ad_> 26$. Namely, only $D(4)$-pairs such that $ad_\leq 26$ are \{1, 5\}, \{1, 12\}, \{1, 21\}, \{2, 6\}, \{3, 4\} and \{3, 7\}. From first three pairs, respecting (21) and (22), we find triples

$$\{5, 12, 96\}, \{12, 21, 320\}, \{12, 96, 1365\}, \{21, 32, 780\}, \{21, 96, 7392\}$$

that do not satisfy (8) nor (9). From the last three pairs we cannot obtain a $D(4)$-triple because of (22).

Finally, we obtain

$$|2d_- t\beta - c| = |2d_- t\beta - t\frac{\sqrt{c}}{\sqrt{b}} + t\frac{\sqrt{c}}{\sqrt{b}} - c| \geq t \left|2d_- \beta - \frac{\sqrt{c}}{\sqrt{b}}\right| - \left|t\frac{\sqrt{c}}{\sqrt{b}} - c\right|$$

$$= t \left|2d_- \beta - \frac{\sqrt{c}}{\sqrt{b}}\right| - \left(1 - \frac{\sqrt{c}}{\sqrt{b}^2}\right) \geq t \left(1 - \frac{\sqrt{c}}{\sqrt{b}^2}\right) - \left(1 + \frac{4}{bc} - 1\right)$$

$$> \sqrt{ab2d_-} - b - \frac{b}{2} \geq b(\sqrt{ad_-} - 1 - \frac{1}{7}) > 4b$$

which contradicts (30). \qed

Theorem 3. $E'(Q)_\text{tors} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$.

Proof. By Mazur’s theorem [16] which characterizes all possible torsion groups for elliptic curves over \mathbb{Q}, since E' has three points of order 2, the only possibilities for $E'(Q)_\text{tors}$ are $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2k\mathbb{Z}$ with $k = 1, 2, 3, 4$. But Lemma 2 shows that the cases $k = 2, 4$ are not possible for an elliptic curve induced by a $D(4)$-triple with positive elements. \qed

Corollary 4. Let $\{a, b, c\}$ be a $D(1)$-triple. Then the torsion group of the elliptic curve $y^2 = (ax + 1)(bx + 1)(cx + 1)$ is either $\simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$.

Remark 4. We note that an analogue of Theorem 3 and Corollary 4 is not valid for general $D(n^2)$-triples and their induced elliptic curves

$$y^2 = (ax + n^2)(bx + n^2)(cx + n^2).$$

For example, for the $D(9)$-triple \{8, 54, 104\} the torsion group of the induced elliptic curve is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. Also, there are examples with torsion group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$, e.g. for the $D(5220840540435206419201940^2)$-triple

$$\{3871249317729019929807383, 101862056999203416732147408, 217448139952121636379025175\}$$
(there are much simpler examples with triples with mixed signs, see e.g. [7]).

We should also mention that we do not know any example of $D(1)$ or $D(4)$-triples inducing elliptic curves with torsion group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$. Indeed, it is known that this torsion group cannot appear for certain families of $D(1)$-triples (see [3, 4, 8, 18]). Again, there are examples of such curves for general $D(n^2)$-triples. For example, the $D(294^2)$-triple $\{32, 539, 1215\}$ induces an elliptic curve with torsion group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$.

References

Andrej DUJELLA,
Department of Mathematics,
University of Zagreb,
Bijenička cesta 30, 10000 Zagreb, Croatia.
Email: duje@math.hr

Miljen MIKIĆ,
Kumčićeva 20, 51000 Rijeka, Croatia
Email: miljen.mikic@gmail.com