ORGANISATION

CHAIRMEN

Prof. Stjepan Lakušić, University of Zagreb, Faculty of Civil Engineering
Prof. Željko Korlaet, University of Zagreb, Faculty of Civil Engineering

ORGANIZING COMMITTEE

Prof. Stjepan Lakušić
Prof. Željko Korlaet
Prof. Vesna Dragčević
Prof. Tatjana Rukavina
Assist. Prof. Ivica Stančerić
dr. Maja Ahac
Ivo Haladin
dr. Saša Ahac
Josipa Domitrović
Tamara Džambas

All members of cetra 2014 Conference Organizing Committee are professors and assistants of the Department of Transportation, Faculty of Civil Engineering at University of Zagreb.

INTERNATIONAL ACADEMIC SCIENTIFIC COMMITTEE

Prof. Vesna Dragčević, University of Zagreb
Prof. Isfendiyar Egeli, Izmir Institute of Technology
Prof. Rudolf Eger, RheinMain University
Prof. Ešref Gačanin, Univeristy of Sarajevo
Prof. Nenad Gucunski, Rutgers University
Prof. Libor Izvolt, University of Zilina
Prof. Lajos Kisgyörgy, Budapest University of Technology and Economics
Prof. Željko Korlaet, University of Zagreb
Prof. Zoran Krakutovski, University of Skopje
Prof. Stjepan Lakušić, University of Zagreb
Prof. Dirk Lauwers, Ghent University
Prof. Zili Li, Delft University of Technology
Prof. Janusz Madejski, Silesian University of Technology
Prof. Goran Mladenović, University of Belgrade
Prof. Otto Plašek, Brno University of Technology
Prof. Vassílios A. Profíllidis, Democritus University of Thrace
Prof. Carmen Racanel, Technical University of Civil Engineering Bucharest
Prof. Tatjana Rukavina, University of Zagreb
Prof. Andreas Schoebel, Vienna University of Technology
Prof. Mirjana Tomičić-Torlaković, University of Belgrade
Prof. Audrius Vaitkus, Vilnius Gediminas Technical University
Prof. Nencho Nenov, University of Transport in Sofia
Prof. Marijan Žura, University of Ljubljana
FOREWORD

The 3rd International Conference on Road and Rail Infrastructure – CeTRA 2014 was organized by the University of Zagreb - Faculty of Civil Engineering, Department for Transportation Engineering. The Conference was held in Split, Croatia. Split is the largest city in Dalmatia and the second largest city in Croatia, and it is also one of “Croatian Champions of Tourism”. The 1st International Conference on Road and Rail Infrastructure (CeTRA 2010) was held on 17-18 May 2010 in Opatija. The 2nd International Conference on Road and Rail Infrastructure (CeTRA 2012) was held on 7-9 May 2012 in Dubrovnik. A great interest of participants in topics and themes from the field of road and rail infrastructure, as shown during the CeTRA 2010 conference (140 papers from 29 countries) and CeTRA 2012 conference (142 papers from 39 countries), justified the Department of Transportation Engineering's decision to organise once again an international event of such great significance. Positive comments received from participants in past conferences motivated the Department for Transportation Engineering of the Faculty of Civil Engineering - University of Zagreb to continue with the organization of this international event.

The CeTRA conference has established itself as a venue where scientific and professional information from the field of road and rail infrastructure is exchanged. The idea on linking research organisations and economic operators has been the guiding concept for the realisation of this conference. Conferences of this kind are undoubtedly a proper place for bringing closer together the economy and university operators, and for facilitating communication and establishing greater confidence that might result in cooperation on new projects, especially those that contribute to greater competition. Lectures organized in the scope of the conference are based on interesting technical solutions and on new knowledge from the field of transport infrastructure as gained on already realised projects, projects currently at the planning stage, and those now under construction, in all parts of the world. In addition to authors from the academic community, lectures were also presented by practical authors, the idea being to ensure the best possible synergy between the theory and practice. Because of a great interest for the themes from the field of road and rail infrastructure, as shown during the past two conferences (CeTRA 2010 and CeTRA 2012), the Department for Transportation Engineering of the Faculty of Civil Engineering – Zagreb assumed the responsibility to organise the CeTRA conference in this year as well.

Our goal for the International Conference on Road and Rail Infrastructure – CeTRA is to have all published papers indexed in scientific databases in order to achieve greater recognition for the conference itself, for published papers, and for their authors. As the serial publication entitled Road and Rail Infrastructure has been achieved with this third conference, the precondition has been fulfilled to obtain the International Standard Serial Number (ISSN), which was the condition for starting procedure for registering this publication in scientific databases. The procedure has already been initiated.

The third International Conference on Road and Rail Infrastructure – CeTRA 2014 is organised in this year in order to bring together scientists and experts from the fields of road and railway engineering, and to present them with yet another opportunity to share results of their research, findings and innovations, analyze problems encountered in everyday engineering practice, and offer possible solutions for a more efficient planning, design, construction, and maintenance of various transport infrastructure facilities and projects. CeTRA 2014 covers many areas: traffic planning and modelling, infrastructure projects, infrastructure management, road pavements, rail track superstructure, construction and
maintenance, transport geotechnics, tunnels and bridges, structural monitoring and maintenance, computer techniques and simulations, noise and vibration, innovation and new technology, urban transport, integrated timetables on railways, rail traffic management systems, vehicle dynamics, traffic safety, and bicycle traffic.

CeTRA 2014 attracted a large number of papers and presentations from 35 countries and 47 universities. More than 146 papers were presented at the conference and are grouped together in these proceedings entitled Road and Rail Infrastructure III. The papers are conveniently divided into twelve chapters: Rail Infrastructure Projects Design, Construction, Maintenance and Management, Road Infrastructure Projects Construction, Maintenance and Management, Road Traffic Planning and Modelling, Road Pavements, Rail Vehicle-Track Interaction, Structural Monitoring and Maintenance, Transport Geotechnics, Integrated Timetables on Railways, Traffic Safety, Environmental Protection, Urban Transport and Passenger services: baggage storage and boarding.

The organizers of the conference wish to express their thanks to all businesses and institutions that provided their valuable support to this Conference. Special thanks are extended to the University of Zagreb, Croatian Railways – HŽ Infrastruktura, and Ministry of Maritime Affairs, Transport and Infrastructure, for their assistance in organizing the workshop on Implementation of European Rail Traffic Management System (ERTMS) in South and East Europe. The Editor commends all authors for excellent papers contributed to these proceedings, and wishes to thank members of the International Academic Scientific Committee, and numerous experts who participated in the review process. The gratitude is also extended to all participants for deciding to come to Split and take part in CeTRA 2014. We believe that these CeTRA 2014 proceedings entitled Road and Rail Infrastructure III will be, just like the preceding two proceedings from the CeTRA cycle, highly interesting and useful to all experts exhibiting a scientific and professional interest in road and rail infrastructure.

THE EDITOR
Prof. Stjepan Lakušić
April, 2014.
CONFERENCE SUPPORT
Under the Auspices of

UNIVERSITY OF ZAGREB

University of Zagreb
Trg maršala Tita 14, 10000 ZAGREB, Croatia

Faculty of Civil Engineering
University of Zagreb
Kačićeva 26, 10000 Zagreb, Croatia
www.grad.hr

MINISTRY OF MARITIME AFFAIRS, TRANSPORT AND INFRASTRUCTURE

Ministry of Maritime Affairs, Transport and Infrastructure
Prisavlje 14, 10000 ZAGREB, Croatia

MINISTRY OF SCIENCE, EDUCATION AND SPORTS

Minister of Science, Education and Sports
Donje Svetice 38, 10000 Zagreb, Croatia

HŽ INFRASTRUKTURA d.o.o.
Mihanovićeva 12, 10000 Zagreb, Croatia
Golden Sponsor

CEMEX
www.cemex.hr

Silver Sponsor

Department of Transportation Engineering
Faculty of Civil Engineering
University of Zagreb
Kačićeva 26, 10000 Zagreb, Croatia
www.grad.hr

Bronze Sponsors

Hottinger Baldwin Messtechnik GmbH
Lemböckgasse 63/2, A-1230 Wien
www.hbm.at

Tensar International
www.tensar-international.com

Media Partners

Journal of Croatian Association of Civil Engineers
Berislavičeva 6, 10000 Zagreb, Croatia
www.casopis-gradjevinar.hr · gradjevinar@hsgi.org

Journal for railway operators and suppliers
www.railwaygazette.com · info@railwaygazette.com
CONTENTS

KEYNOTE LECTURES

GEOTECHNICAL CHALLENGES FOR THE EUROPEAN TEN-T NETWORK — SMARTRAIL AND BEYOND
Kenneth Gavin, Cormac Reale, Jianfeng Xue ... 21

1 RAIL INFRASTRUCTURE PROJECTS DESIGN, CONSTRUCTION, MAINTENANCE AND MANAGEMENT

OPTIMISATION OF RAILWAY OPERATION BY APPLICATION OF KRONECKER ALGEBRA
Mark Volcic, Johann Blieberger, Andreas Schöbel .. 37

THE STUDY ON GROUND BEHAVIOR BY STEEL PIPE JACKING BASED ON A FULL-SCALE TEST
Eum Kiyoungh, Choi Chanyong, Lee Seonghyeok, Lee Jeeha, Chung Heungchae .. 43

DEVELOPMENT OF A HEATING SYSTEM FOR HOLLOW SLEEPERS
CONTAINING POINTS POSITIONING SYSTEMS
Benjamin Kaufmann, Franz Kurzweil, Julian Heger, Robert Adam, Steffen Grossmann .. 51

RAILWAY M201, SECTION KRIŽEVCI – KOPRIVNIČKA – STATE BORDER:
UPGRADE AND CONSTRUCTION OF SECOND TRACK
Nebojša Opačić, Joanna Zboromirska .. 59

TRAFFIC-CONSTRUCTIONAL ASPECTS FOR BUILDING OF BYPASS AROUND NIS IN CORRIDOR X
Tatjana Simić, Tatjana Mikić .. 65

REHABILITATION OF RAILWAY LINES ŠAMAC – SARAJEVO AND SARAJEVO – ČAPLJINA
Saša Đžumhur, Amra Zvizdić .. 73

RAIL TRAFFIC NOISE PROTECTION IN CROATIA — CHALLENGES DURING THE FIRST APPLICATION
Stjepan Lakušić, Maja Ahac, Dalibor Bartoš ... 81

MAINTENANCE IN THE LIFE CYCLE OF RAILWAY INFRASTRUCTURE
Waldemar Alduk, Saša Marenjak .. 89

TRACK GEOMETRY MEASUREMENT AS PREVENTIVE MAINTENANCE DATA SOURCE
Janusz Madejski ... 97

RAILWAY INVESTMENT PLANNING USING DYNAMIC PRIORITIES
Dragana Macura, Nebojša Bojović, Milica Šelmić, Milutin Milošević .. 105

EUROPEAN EXISTING RAILWAY TRACKS: OVERVIEW OF TYPICAL PROBLEMS AND CHALLENGES
Irina Stipanovic Oslakovic, Xincai Tan, Kenneth Gavin .. 113

FINANCING OF RAILWAY CORRIDOR INFRASTRUCTURE IN TRANSIT COUNTRIES
Ljubo Žerak .. 119

THE STRATEGY OF INTRODUCING ECTS SAFETY SYSTEM
ON RAILWAY CORRIDOR Vc IN BOSNIA AND HERZEGOVINA
Igor Marković .. 127

2 ROAD INFRASTRUCTURE PROJECTS CONSTRUCTION, MAINTENANCE AND MANAGEMENT

TOWARDS MAXIMIZATION OF THE ADDED VALUE OF STRATEGIC INFRASTRUCTURE PROJECTS
IN SOUTH EAST EUROPE THROUGH IMPROVEMENTS AT BORDER CROSSING POINTS
Marios Miltiadou, Efstatios Bouhouras, Christos Taxiltaris, George Mintsis .. 137

ANĐELI INTERCHANGE ON MATULJI – UČKA SECTION OF ADRIATIC HIGHWAY (B8)
Nebojša Opačić .. 147
INVESTMENT PLAN FOR BAR – BOLJARE MOTORWAY
Angelina Živković, Dragana Macura, Rešad Nuhodžić ... 153

PROBLEMS TRACING BYPASS CORRIDOR IN SMALL CITY IN THE EXAMPLE OF DRNIS
Ana Rigo, Željko Stepan, Igor Majstorović .. 159

IMPORTANCE OF TEMPORARY TRAFFIC REGULATION
DURING CONSTRUCTION OR RECONSTRUCTION OF ROADS
Sanja Dimter, Hrvoje Dragovan, Dalibor Opačak, Vladimir Moser ... 167

NEW ROAD MAINTENANCE MODEL IN FINLAND – 2014 PILOT PROJECT
Pekka Pakkala, Katja Levola .. 175

EXPERIMENTAL SECTIONS IN THE HUNGARIAN ROAD MANAGEMENT
László Gáspár, Zsolt Bencze .. 183

REDUCING COST OF INFRASTRUCTURE WORKS USING NEW TECHNOLOGIES
Adrian Burlacu, Carmen Racanel .. 189

ROAD NETWORK MANAGEMENT IN CROATIA IN COMPARISON WITH OTHER EUROPEAN COUNTRIES
Andrea Stanič, Zlata Dolaček-Alduk, Sanja Dimter ... 195

LONG TERM PERFORMANCE OF ROAD MARKINGS ON RURAL ROADS:
GUIDE–LINES FOR MAINTENANCE MANAGEMENT
Marco Pasetto, Stefano Damiano Barbati ... 203

APPLICATION OF AN ARTIFICIAL NEURAL NETWORK IN A PAVEMENT MANAGEMENT SYSTEM
Hrvoje Dragovan, Tatjana Rukavina, Josipa Domitrović ... 211

3 ROAD TRAFFIC PLANNING AND MODELLING

THE USE OF DIFFERENT METHODOLOGIES FOR SATURATION HEADWAYS
AND SATURATION FLOW RATES AT SIGNALIZED INTERSECTIONS
S. Kosmopoulou, A. Efthimiou, G. Mintsis, C. Taxiltaris, S. Basbas, M. Miltiadou 221

COMPARATIVE STUDIES REGARDING TRAFFIC FLOW IMPROVEMENT SCENARIOS
USING SOFTWARE MODELLING AND REAL MEASURED DATA
Nicolae Ciont, Mihai Iliescu, Rodica Dorina Cadar .. 229

TRANSPORT DEMAND MODELING FOR NATIONAL PARK MAVROVO
Vaska Atanasova, Kristina Hadjipetkova, Dragan Ilievski ... 237

IMPACTS OF THE CONSTRUCTION OF THE PLANNED RESIDENTIAL
AND BUSINESS COMPLEX ON THE ROAD NETWORK OF THE CITY OF MOSTAR
Suada Džeko, Mirza Pozder .. 243

DETERMINATION OF THE EFFECT OF INTERSECTION CONTROL MODE ON VEHICLE DELAY TIMES
Jan Hradil, Michal Uhlik, Tomas Havlicek ... 249

SUSTAINABLE MOBILITY OF SMALL TOURIST PLACES
Mario Njegovec, Luka Kosmat .. 257

OFFTRACKING CONTROL REQUIREMENTS FOR QUALITY ROUNDABOUT DESIGN
Ivica Stančerić, Tomislav Dobrica, Saša Ahac, Vesna Dragžević, Danijel Tenžera 263

COMPARISON BETWEEN MODELLED AND MEASURED TRAVELLING TIME IN URBAN ROUNDABOUTS
Irena Ištoka Otković, Martina Zagvozda, Matjaž Šraml .. 269

IDENTIFICATION OF AT-GRADE INTERSECTIONS CHARACTERISTICS
FOR DEFINING BASIC INPUTS INTO MCA METHODOLOGY
Jan Hradil, Michal Uhlik, Petr Slaby .. 275

4 ROAD PAVEMENTS

PAVEMENT MAINTENANCE PROGRAMMING CONSIDERING THREE OBJECTIVES:
MAINTENANCE AND REHABILITATION COSTS, USER COSTS, AND THE RESIDUAL VALUE OF PAVEMENTS
Adelino Ferreira, Susana Meneses, Cassio Paiva ... 285
INFLUENCE OF TIRE PRESSURE ON THE VERTICAL DYNAMIC LOAD
APPLIED ON THE PAVEMENT BY A TRUCK’S FRONT SUSPENSION
Pablo Yugo Yoshia Kubo, Cassio Eduardo Lima De Paiva, Adelino Ferreira .. 293

DESIGN MODEL FOR STATIC AND IMPACT LOAD AFFECTED PAVEMENTS
Audrius Vaitkus, Viktoras Vorobjovas, Judita Gražulytė, Rita Kleizienė ... 301

ALTERNATIVE REHABILITATION METHODS FOR LOW-VOLUME ROADS
Audrius Vaitkus, Viktoras Vorobjovas ... 309

CONSIDERATION REGARDING ASPHALT MIXTURES IN ROAD PAVEMENT AND AIRPORT PAVEMENT
Carmen Răcănel, Claudia Petcu ... 319

IMPACT OF HIGH PROCESS TEMPERATURE ON VISCOELASTIC PROPERTIES OF
POLYMER MODIFIED BITUMEN IN WATERPROOFING AND BRIDGE PAVEMENTS
Michał Sarnowski, Piotr Radziszewski, Karol J. Kowalski, Jan B. Król ... 325

EFFECTS OF CLIMATIC FACTORS ON THE SHAPE OF DEFLECTION BOWL
Csaba Tóth, Ibolya Szentpéteri ... 331

SUBGRADE BEARING CAPACITY INFLUENCE ON FLEXIBLE PAVEMENT STRUCTURES BEHAVIOUR
Ştefan Marian Lazăr, Elena Diaconu ... 339

LABORATORY AND FIELD EXPERIENCE WITH PMMA/ATH COMPOSITE DUST IN ASPHALT MIXTURES
Marjan Tušar .. 345

NEW SOLUTIONS FOR DISTRESSED PAVEMENT REHABILITATION OF VILNIUS CITY STREETS
Audrius Vaitkus, Donatas Čygas, Rita Kleizienė, Laura Žiliūtė ... 351

THE IMPACT OF COMPACTION ENERGY ON THE PROPERTIES OF ASPHALT LAYERS
Ivica Androjić, Gordana Kaluder, Mario Komiljen ... 359

INDIRECT TENSILE TEST OF ASPHALT MIXTURE STIFFNESS MODULUS
Miroslav Šimun, Maja Halle ... 367

MOISTURE DAMAGE AND LOW TEMPERATURE CRACKING
OF MODIFIED BITUMINOUS MIXTURES FOR ROAD PAVEMENTS
Marco Pasetto, Nicola Baldo ... 373

COMPARISON THE CHARACTERISTICS OF AC 8 SURF AND AC 11 SURF
AND RESULTS BETWEEN TREE LABORATORIES AT LOW TEMPERATURES
Dejan Hribar, Marjan Tušar, Tomislav Šafran .. 379

EXAMPLES OF REUSE OF MATERIALS OF DECONSTRUCTION
FOR THE CONSTITUTION OF A ROAD STRUCTURE – RECYVIA® PROCESS
Jean-Etienne Urbain, Eric Layerle ... 389

ENVIRONMENT PROTECTION BY USING NEW TECHNOLOGIES FOR ASPHALT MIXTURES
Carmen Racanel, Adrian Burlacu ... 395

EFFECTS OF A CHEMICAL WMA ADDITIVE ON AGING CHARACTERISTICS OF BITUMINOUS MIXTURES
Peyman Aghazadeh Dokandari, Julide Oylumluoglu Oner, Ali Topal, Burak Sengoz .. 401

IMPACT OF SELECTED CHEMICAL ADDITIVES
ON PERFORMANCE BEHAVIOR OF WARM ASPHALT CONCRETE MIX
Jan Valentin, Petr Mondschein, Jan Beneš, Lukáš Kášek, Lucie Soukupová .. 409

VIASPHALT BT®, THE MASTIC ASPHALT “LOW” AND “VERY LOW” TEMPERATURE
Jean-Etienne Urbain ... 419

THE EFFECTS OF AGEING ON ROAD BITUMEN MODIFIED WITH THE ETHYLENE VINYL ACETATE POLYMER
Vesna Ocelić Bulatović, Vesna Rek, Emi Govorčin Bajsić .. 425

ASSESSMENT OF AN APPROPRIATE MODIFIER CONTENT
IN MODIFIED BITUMEN BASED ON THE MULTIPLE STRESS CREEP RECOVERY TEST
Jan B. Król, Piotr Radziszewski, Karol J. Kowalski, Michał Sarnowski ... 431

EXPERIMENTAL STUDY ON THE ENHANCEMENT OF MECHANICAL
PROPERTIES OF BITUMINOUS MASTICS AT HIGH STRAINS
Marco Pasetto, Stefano Damiano Barbati, Giovanni Giacomello ... 439
EFFECf OF BITUMEN ORIGIN ON BEHAVIOR
OF COLD RECYCLED MIXES USING FOAMED BITUMEN TECHNIQUE
Jan Valentin, Jan Suda, Zuzana Formanová, Tereza Valentová .. 447

INFLUENCE OF CHEMICAL CATALYSTS AND SELECTED ADDITIVES
ON BEHAVIOR OF CRUMB RUBBER MODIFIED BITUMEN
Kristýna Miláčková, Lucie Soukupová, Jan Valentin ... 455

5 RAIL VEHICLE-TRACK INTERACTION

TRACK-STRUCTURE INTERACTION ANALYSIS USING FE MODELLING TECHNIQUES
Philip Icke, Geoffrey Paice ... 467

VIBRATION PROBLEMS AT SWITCHES
Manfred Bauer .. 475

MEASUREMENT AND ANALYSIS OF THE DYNAMIC EFFECTS ON THE CROSSINGS
Ivan Vukušić, Daniela Sadleková, Jaroslav Smutný, Luboš Pazdera, Vladimír Tomandl, Jan Hajniš .. 483

ADVANTAGES OF INSTALLATION OF RUBBER-METAL ELEMENTS IN SUSPENSION OF RAILWAY VEHICLES
Dragan Petrović, Dobrinka Atmadzhova, Milan Bižič .. 491

PLASTIC SLEEPER ANCHORS IN CZECH REPUBLIC
Otto Plášek, Miroslava Hruzíková, Richard Svoboda, Lubomír Malovaný, Milan Valenta 499

ROLLING CONTACT FATIGUE ON TRAMWAY'S RAIL
Vinko Akos ... 509

6 STRUCTURAL MONITORING AND MAINTENANCE

BRIDGE EVALUATION METHOD USING METROLOGICAL METHODS
IN SHORT AND LONG-TERM MEASUREMENTS
Gert Gommola, Peter Krempels ... 519

EVALUATION AND MANAGEMENT OF SEISMIC ENDANGERMENT OF RING ROAD THESSALONIKI
C. Antoniadis, A. Triantafyllidis, A. Anastasiadis, Pitsiava – M. Latinopoulou 527

MOVING LOAD EFFECT ON BRIDGES
Luboš Daniel, Ján Kortiš .. 535

REHABILITATION OF STEEL RAILWAY BRIDGES BY IMPLEMENTATION OF UHPFRC DECK
Igor Džajić, Aljoša Sajna, Irina Stipanovićoslaković .. 541

INFLUENCE OF TRAM INDUCED VIBRATION ON UNDERGROUND GARAGE STRUCTURE
Stjepan Lakušić, Ivo Haladin, Marijan Bogut ... 549

7 TRANSPORT GEOTECHNICS

STABILISATION OF FORMER TRUNK ROAD EMBANKMENT
USING COMBINED STRUCTURAL AND ECO-ENGINEERING STRATEGIES
Slobodan B. Mirkovski .. 559

POSSIBLE IMPACT OF EUROCODE 7 ON SLOPE DESIGN FOR ROADS AND RAILWAYS

GEORISK – A RISK MODEL AND DECISION SUPPORT TOOL FOR RAIL AND ROAD SLOPE INFRASTRUCTURE
Paul Doherty, Kenneth Gavin, Karlo Martinović, Cormac Reale .. 573

SLOPE REMEDIATION METHODOLOGY ON THE ZAGREB-MACELIJ HIGHWAY
Goran Grget, Katarina Ravnjak, Mladen Krpan .. 581

MULTIPLE LOAD CASE ON FLEXIBLE SHALLOW LANDSLIDE BARRIERS – MUDSLIDE AND ROCKFALL
Corinna Wendeler, Vjekoslav Budimir .. 587

DESIGN OF RAILWAY TRACKBEDS WITH GEOCELLS
Moshe Livneh, Noam A. Livneh ... 595

CETRA 2014 – 3rd International Conference on Road and Rail Infrastructure
15

CETRA 2014 – 3rd International Conference on Road and Rail Infrastructure
AN APPROACH TO ASSESSING DRIVER’S BEHAVIOUR AT ROUNDABOUTS
Fatih Moutchou, Abdelghani Cherkaoui, El Miloudi El Koursi ... 791

HOMOGENIZATION OF SPEED ON SECONDARY AND LOCAL ROADS IN THE FLANDERS REGION:
AN EXPLORATORY STUDY MAKING USE OF A TRAFFIC SIGNS DATABASE
Dirk Lauwers, Johan De Mol, Dominique Gillis .. 761

SAFETY MEASURES IN ROAD TUNNELS
Ivana Koml, Ivica Stančerić, Željko Stepan ... 771

APPROACHES TO SOLVE THE PROBLEM OF PASSIVE SAFETY OF PASSENGER WAGONS
Venelin Pavlov, Nencho Nenov, Veselin Stoyanov .. 779

FACTORS INFLUENCING DRIVER’S BEHAVIOUR AT INTERSECTIONS CROSSED BY THE TRAM
Fatih Moutchou, Abdelghani Cherkaoui, El Miloudi El Koursi .. 785

IMPROVING THE RESILIENCE OF THE METRO VEHICLE TO BLAST AND FIRE
El Miloudi El Koursi, Jean Luc Bruyelle, Amaury Flancquart .. 793

THE IMPLEMENTATION OF INTELLIGENT INFORMATION SYSTEMS
TO INCREASE SAFETY IN RAIL LEVEL CROSSINGS
Marko Hoč, Ivan Vlašić .. 799

10 ENVIRONMENTAL PROTECTION

WELL-TO-WHEEL ENERGY COMPARISON OF US AND EUROPEAN RAIL FREIGHT
Romain Bosquet, Olivier Cazier .. 809

COMPARATIVE WIND INFLUENCE ON USE PHASE ENERGY CONSUMPTIONS OF ROADS AND RAILWAYS
A. Coiret, P.-O. Vandanjon, R. Bosquet, A. Jullien ... 817

IMPACT OF NEW BUILT ROUNDABOUTS ON ENVIRONMENTAL IN CITY OF VINKOVCI
Nikola Šubić, Marko Lučić, Tomislav Zulumović ... 825

ISSUES RELATED TO THE IMPACT OF NOISE AT AT-GRADE INTERSECTIONS
Jan Hradil, Jan Kovařík ... 833

THE IMPACT OF INTERSECTION TYPE ON TRAFFIC NOISE LEVELS IN RESIDENTIAL AREAS
Tamara Đzambas, Saša Ahac, Vesna Dragčević .. 841

PERFORMANCE CHECKS AS PREREQUISITES FOR ENVIRONMENTAL BENEFITS OF ROUNDABOUTS
Saša Ahac, Tamara Đzambas, Ivica Stančerić, Vesna Dragčević ... 847

URBAN PAVEMENT SURFACES HEATING – INFLUENCING PARAMETERS
Marijana Cuculić, Aleksandra Deluka-Tibljaš, Sergije Babić .. 853

BURIED FLEXIBLE CORRUGATED STEEL STRUCTURES
– MODERN TECHNOLOGY IN CONSTRUCTION OF WILDLIFE CROSSINGS
Adam Czerepak, Mario Bogdan, Ivana Baršić ... 859

11 URBAN TRANSPORT

TEACHING ETHICS TO TRANSPORT ENGINEERS – THE RATIONAL BEHIND
AND PRACTICE AT VIENNA UNIVERSITY OF TECHNOLOGY
Tadej Brezina, Harald Frey, Günter Emberger, Ulrich Leth ... 867

INNOVATIVE APPROACHES OF PROMOTING NON-MOTORIZED TRANSPORT IN CITIES
Ulrich Leth, Harald Frey, Tadej Brezina ... 875

PUBLIC PARTICIPATION FOR SUCCESSFUL TRAFFIC AND TRANSPORT PLANNING
Volker Blees ... 883

THE IMPACT OF PUBLIC TRANSPORT PERFORMANCE IMPROVEMENTS ON
SUSTAINABLE URBAN MOBILITY – AN EXAMPLE OF THE CITY OF ZAGREB
Davor Brčić, Marko Slavulj, Dino Šojat .. 889

EVALUATION OF THE VARIABLE MESSAGE SIGNS (VMS) SYSTEM
IN THE CENTRAL AREA OF THESSALONIKI FROM THE USER POINT OF VIEW
S. Basbas, G. Mintsis, C. Taxiltaris, A. Betos, D. Kyriazopoulos, M. Nikolaidis ... 897

CETRA 2014 – 3rd International Conference on Road and Rail Infrastructure
TESTING A MIXTURE MODEL FOR THE DISTRIBUTION OF ARRIVAL TIME OF URBAN RAILWAY TRAVELLERS
Kazuyuki Takada, Yuzo Takanami, Makoto Fujii

903

ANALYSE OF THE ACCESSIBILITY OF PEOPLE WITH DISABILITIES
OR REDUCED MOBILITY USING URBAN TRANSPORT TO HEALTH TREATMENT
Maria Teresa Françooso, Carlos Alberto Bandeira Guimarães, Gustavo Fabricio D’Estefano

909

PROBLEMS IN PLANNING OF THE PRIMARY ROAD CORRIDORS
IN THE CITIES ON THE EXAMPLE OF THE CITY OF ZAGREB
Igor Majstorović, Mario Njegovec, Željko Stepan

915

STRATEGY OF DEVELOPMENT TRENDS IN THE MODERN CITY
– A GREEN TRANSPORT PLAN IN CASE OF ZAGREB
Branko Kinc, Stipan Matoš

923

GENETIC ALGORITHMS TO OPTIMAL DEFINITION OF PEDESTRIAN TERMINAL LAYOUT
Cristian Giacomini, Giovanni Longo

929

ASSESSMENT OF THE DEMAND FOR BICYCLE PARKING INFRASTRUCTURE IN VIENNA
Paul Pfaffenbichler, Tadej Brezina, Harald Frey

937

TEN YEARS OF BIKE-SHARING IN VIENNA – AN EXPLORATION INTO SUBJECTIVE USER CHOICES
Helmut Lemmerer, Takeru Shibayama, Tadej Brezina

945

BICYCLE TRAFFIC IN THE CITY OF OSIJEK
Martina Zagvzožda, Ivana Barišić, Sanja Dimter

953

STUDENT BICYCLE SHARING SYSTEM IN ZAGREB – STUDOCIKL
Ljupko Šimunović, Mario Čosić, Marko Slavulj

961

ANALYSIS OF PEDESTRIAN AND CYCLIST BEHAVIOUR AT LEVEL CROSSINGS
Hrvoje Pilko, Danijela Barić, Dubravka Hozjan

969

STUDY ON THE AVAILABILITY OF “TWITTER” DATA
FOR FORECASTING SUSPENSION TIME OF RAILWAY OPERATION
Makoto Fujii, Kazuyuki Takada

977

13 PASSENGER SERVICES: BAGGAGE STORAGE AND BOARDING

STORE&GO+ – NEW PASSENGER SERVICES BY NEW BAGGAGE STORAGE ROBOTS
Hans-Christian Graf

985

REQUIREMENTS ON FUTURE RAILWAY INTERIORS
Bernhard Rüger

991

PUBTRANS4ALL – ACCESSIBLE BOARDING INTO OLDER COACHES
Bernhard Rüger, Goran Simić

997

AUTHOR INDEX

1005
ANALYSIS OF PEDESTRIAN AND CYCLIST BEHAVIOUR AT LEVEL CROSSINGS

Hrvoje Pilko, Danijela Barić, Dubravka Hozjan
University of Zagreb, Faculty of Transport and Traffic Sciences,
Department of Road Transport, Croatia

Abstract

Level crossings (LCs) are points of conflict between rail and road traffic. Therefore, from the aspect of safety they are potentially high-risk traffic points. Traffic participants at LCs are pedestrians, cyclists, motorcyclists, car drivers and locomotive drivers. The behaviour of traffic participants represents the main cause of traffic accidents at LCs. Most research examining road users’ behaviour at LCs has focused on car drivers and there are few studies dedicated to pedestrians and cyclists, especially in Croatia. Cyclists are often treated like pedestrians but cyclists can travel much faster than pedestrians, which can cause unexpected behaviour. The paper gives an overview of the existing cycling features in the City of Zagreb and the statistics of accidents on LCs in the Republic of Croatia. Also, through a review of the major recent studies on the behaviour of pedestrians and cyclists at railroad crossings, the trends have been presented as well as the results of research. The review paper will serve as the basis for further research of design, traffic safety and the behaviour of pedestrians and cyclists, and their correlation at the LCs in the Republic of Croatia.

Key words: level crossings, pedestrians, cyclists, traffic safety

1 Introduction

Level crossings (LCs) are places of direct conflict between rail and road traffic. Since these are collision points of two traffic systems, they represent from the safety point of view traffic points of high risk at which there often comes to emergency situations, sometimes with the severest of consequences. Statistical data show that in more than 90% of emergency cases the main cause lies in the road motor vehicle drivers and pedestrians. In the Republic of Croatia there is a total of 1,514 LCs out of which 60 are level pedestrian crossings. The safety level depends on the category of the railway line and road, permitted speed, field conditions and local circumstances at the crossing point. Consequently, LCs can be secured by road traffic signs (minimally the sign STOP and St. Andrew's cross) and the visibility triangle or security device (automatic device – light-audio signals with or without half-barriers and mechanical device – barriers). Automatic or mechanical devices are used at 531 LCs, whereas the remaining 923 are secured by road traffic signs and the visibility triangle [1]. The issue of LCs is included in a large number of laws, regulations and other documents defining the security method as well as under whose jurisdiction lies the solving of certain segments of LC [2, 3]. On the other hand, although cycling has significantly increased over the recent several years, the cycling issues are included in the legal regulations at an extremely low extent [4]. Neither are the investments into infrastructure improvement sufficient, which affects negatively the safe flow of traffic and leads to emergency situations.
2 Analysis of cycling traffic

2.1 Summarized overview of carried out research of cycling traffic

A significant increase in cycling in the countries worldwide, particularly in the cities, has been evident and is the result of implementing long-year structural programs and measures as a special segment of comprehensive traffic policies with the aim of increasing bicycle traffic. The majority of these programs and measures are in correlation with the implementation of measures for the improvement of other travelling modes. Review of literature [5] suggests the need to facilitate cycling through appropriate bicycle infrastructure, integration with public transport, traffic calming, training and education programs, bicycle access programs, and legal issues. Countries and cities with high levels of cycling and good safety rates tend to have extensive infrastructure, as well as pro-bicycle policies and programs, whereas those with low cycling rates and poor safety records generally have done much less. However, it is not clear which measures are the most effective and should be given priority in designing and implementing a pro-bicycle policy package. A significant increase in bicycle traffic is evident from the following. For example, Berlin almost quadrupled the number of bicycle trips between 1970 and 2001 and doubled the bicycle share of trips from 5% in 1990 to 10% in 2007. In spite of the sharp rise in cycling, serious injuries in Berlin fell by 38% from 1992 to 2006. In only six years, the bicycle share of trips within the City of Paris more than doubled from 1% in 2001 to 2.5% in 2007. The bicycle share of trips in Bogota quadrupled from 0.8% in 1995 to 3.2% in 2006. The total number of bicycle trips in London doubled between 2000 and 2008, while cyclist injuries fell by 12% over the same period. Amsterdam raised the bicycle share of trips from 25% in 1970 to 37% in 2005 while serious cyclist injuries fell by 40% between 1985 and 2005. From 1995 to 2003, the bicycle share of trips in Copenhagen rose from 25% to 38% among those aged 40 years and older [5]. Looking at these research results one cannot determine which measures/packages dealt with the issue of cycling traffic at level crossings, both from the aspect of relevant bicycle infrastructure, improvement of cyclists’ traffic safety, etc. Therefore, it is necessary to carry out further systemic research of cycling traffic at LCs.

2.2 Features of bicycle traffic in the City of Zagreb

In the City of Zagreb for the last 15 years there have been ongoing measures to improve and encourage bicycle traffic in the overall travel. In the mid 1980s the bicycle traffic and bicycle-oriented surfaces were intended exclusively for recreational and sporting purposes (the first example was the bike path around the lake of Jarun) which is mostly the case today. In the period since 2010 additional 21 km of cycling paths have been made in the wider urban area and 138 km of sport-recreation cycling paths in the Nature Park Medvednica, which is a total of approximately 370 km. Also, the City of Zagreb undertook a number of other traffic technical and regulatory interventions with the aim of improving the conditions for bicycle traffic (e.g. removal of urban and architectural barriers, marking of cycling areas with red filled (infill) lanes in the full profile, construction of bicycle path or lane during reconstruction and major road repairs). First official data regarding the volume of bicycle traffic were recorded in the year 1999 for the purpose of a traffic study of the City of Zagreb [6]. The research covered in this study shows that only 0.7% of the daily trips are realized by bicycle. However, it is interesting to note that 51% of households said that they had at least one bicycle, which represents a respectable potential for greater use of bicycles as means of travel. After the above mentioned traffic study, several measurements and surveys were conducted which provided an approximate image for certain characteristics of the intensity of bicycle traffic. In the study performed by ISIP-MG [7], measurement of traffic at 16 locations was carried out, mostly on the city’s busiest traffic corridors. Based upon these limited measurements,
it can be assessed that there is a certain amount of increase in bicycle traffic. Furthermore, by carrying out comprehensive research for the needs of the Project CiViTAS ELAN ZAGREB at certain locations the measurement of cycling traffic was carried out [8]. Figure 1 shows the results of measurements for 2008 and 2012. By comparing the measurement results one can conclude that at the observed locations significant increase in bicycle traffic was recorded, in the amount of 17.18% to even as much as 72.25%, although the cycling infrastructure is still insufficiently developed and not at an acceptable level.

![Figure 1](image.png)

Figure 1 Average number of cyclists at four control locations [8]

Table 1. shows a significant reduction in the number of fatalities during 2012 in relation to the previous year 2011 by as much as 71.43%. The statistical reports [9] state as the most frequent causes of traffic accidents involving cyclists the following: riding across pedestrian crossing, failure to use cycling paths/lanes, riding on sidewalks, and no lights at night. It should be mentioned that during 2012 in traffic accidents involving cyclists, they were responsible for about 2/3 of traffic accidents of this type, which can be attributed to the low level of traffic culture, i.e. disregard of traffic rules. However, it is impossible to determine from the data what is the number and what are the types/consequences of accidents that occurred at LCs involving pedestrians, i.e. cyclists.

<table>
<thead>
<tr>
<th>Number of traffic accidents involving cyclists</th>
<th>Year</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2011</td>
</tr>
<tr>
<td>with fatalities</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>with injured</td>
<td>309</td>
<td>297</td>
</tr>
<tr>
<td>with material damage</td>
<td>93</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>404</td>
<td>414</td>
</tr>
</tbody>
</table>

Further development and improvement of bicycle traffic in the City of Zagreb will be focused upon interventions that can be defined through the following program components: improving conditions in the existing bicycle network, further development and expansion of bicycle paths or lanes, implementation of public bicycle service (e.g. nextbike), amending legislation regarding regulation of bicycle traffic, education and marketing activities to encourage people to use bicycles as a means for the realization of commuting [10]. Consequently, it is necessary to systematically monitor the movement of bicycle traffic and the safety level for the area of the City of Zagreb. Among other things, this would create a certain base of traffic data with the objective of more detailed analysis of non-motorized traffic in/at the area of LCs. Such analysis should result in a proposal of measures and guidelines for proper management and design of non-motorized traffic in/at the areas of LCs.
3 Analysis of safety situations at level crossings

In railway traffic an safety situation represents an undesired, unintentional or unexpected event or sequence of such events, which results in any kind of damage, regardless of the amount of damage. Emergency situations are divided into four basic categories: serious accidents, accidents, disturbances and avoided accidents [11]. Serious accident is an emergency situation in railway traffic in which at least one person has been killed, and/or five or more persons are physically injured, and/or the material damage is greater than five million kuna. An accident is an emergency situation in railway traffic with harmful consequences such as severe physical injuries of up to four persons and material damage that can be estimated at a value of up to five million kuna [1]. Traffic safety at LCs means safety of railway and road traffic. The safety condition at LCs in the Republic of Croatia is best shown by the statistical data about the number of traffic accidents and consequences. An analysis of accidents at LCs and their consequences in the period 2007-2008 still show a significant number of accidents, either fatal or greater number of injured persons, and with considerable material damage. Particularly worrisome trend of steady growth in the number of injured people tend to LCs with the highest level of security. Comparing the 2011 and 2012, it is evident that in the 2012 the number of serious accidents is significantly reduced (25%) and the number of fatalities as well (34.6%). In the 2012 on the LCs happened a total of 45 accidents, eight serious accidents and 37 accidents. It is disturbing the fact that seven of these accidents occurred at LCs secured with automatic devices with light-acoustic signaling and semi-barriers in which two people died and one person was seriously injured. On the LCs secured with light-acoustic signaling occurred 13 accidents in which one person was killed and eight were seriously injured, while the 25 accidents that occurred at crossings marked by road traffic signs “Stop” and “Andrew’s Cross”, five people were killed and six were seriously injured (Figure 2., Table 2. and 3.).

According to statistics published by the European Railway Agency (ERA), there are at least 123,000 LCs in the European Union (EU). Most of them (71%) are passive LCs without any active warning or protection devices, such as lights, bells or gates. Roughly 45% of LC accidents in the EU occur at passive LCs, and 65% of road users involved in accidents are drivers or occupants of passenger cars or heavy vehicles. In 2010, there were 359 LC accident fatalities in the EU. This represents 29% of fatalities in railway accidents but only about 1.2% of all road accident fatalities. Most of the direct causes are related to the behaviour of road users (95%) [12]) such as distraction, while other causes of accidents were related to weather conditions or the condition of the driver (e.g. alcohol/drugs) [13]. An evaluation of accident data on 256 LC accidents was carried out as part of the SELCAT (Safer European Level Crossing Appraisal and Technology) project. About 91% of level crossing accidents in the EU were found to be caused by human failure, and over 80% were found to have been caused by the driver of the road vehicle not respecting the traffic rules [14].

Table 2 Overview of emergency situations at LCs [1]

<table>
<thead>
<tr>
<th>Safety situation</th>
<th>SERIOUS ACCIDENTS</th>
<th>ACCIDENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>secured with SS-devices</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>secured with traffic signs</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>pedestrian crossing</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
Table 3 Analysis of consequences of emergency situations at LCs [1]

<table>
<thead>
<tr>
<th>Safety situation</th>
<th>FATALITIES</th>
<th>SEVERELY INJURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>secured with SS-devices</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>secured with traffic signs</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>pedestrian crossing</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Emergency situations at LCs in Croatia:
- **SERIOUS ACCIDENTS**
- **ACCIDENTS**

Figure 2 Emergency situations at LCs in Croatia [1]

4 Overview of studying the behaviour of participants in road traffic at level crossings

Most research examining road users’ behaviour at LCs has focused on car drivers, and there are fewer studies dedicated to pedestrians and cyclists. One of the significant problems is trespassing. A number of studies have suggested that the main reason for trespassing is taking
a shortcut from point A to point B because the authorised route is assessed to be too far away. According to a study in Finland, most people were trespassing while going shopping, jogging, or on their way to school or work. Thirty-five percent of all respondents trespassed daily or almost daily. It is significant that 67% of all respondents answered that they trespassed at least once a week. Half of the respondents assessed that the trespassing is either completely or fairly safe. Overall, 59% of the respondents considered trespassing illegal, 15% considered it legal and 26% did not know. One of the measures to decrease trespassing is the installation of countermeasures. The data show that there were 78 bicycle trespassings before installation of countermeasures and zero trespassing after the installation of countermeasures [15]. Studies indicate that different road users might interact differently with the LC system. In particular, on-road studies indicate that the content of individuals’ situation awareness or their sense of what is going on around them varies depending on their transportation mode, although some authors suggest that these differences result in cognitive incompatibilities between different road users [16]. Motorcyclists appear to be more focused on anticipating potential hazards than car drivers, whereas cyclists in dense traffic may focus more on seeking safe alternative travel routes such as bicycle lanes, service lanes and footpaths [17]. Beanland et al. designed a longitudinal survey to record interactions at LCs over a two-week period. The survey focused on understanding how individuals behaved in the presence of a train, which included examining the decision that they made (to stop or proceed before the train) and the specific factors that assisted their decision-making in that situation. The sample included 166 adults residing in metropolitan Melbourne (80%) and regional Victoria (20%), with a mix of car drivers, motorcyclists, cyclists and pedestrians. Visual information (e.g., flashing lights) emerged as one of the most influential factors for car drivers and motorcyclists, whereas pedestrians and to a lesser extent cyclists relied more on auditory information (e.g., bells) to alert them to the presence of a train. Pedestrians were also more likely than other road users to speed up and cross the tracks ahead of an approaching train. Overall, these results emphasise the importance of designing road systems to support cognition and behaviour across a range of road users, in order to ensure a safe system for all [18]. In addition, a relatively large survey of 1,862 cyclists in Queensland, Australia found that women are more likely to cycle off-road than men, and are less likely to commute by bicycle than men, and that, although factors related to traffic conditions, motorist aggression and safety are concerns for both women and men, women report a far greater number of these constraints [19]. Pedestrian treatments on risky behaviour at light rail transit LCs was researched by Siques. Five treatments were evaluated: pedestrian automatic gates, a prototype active pedestrian warning device, a prototype active “Look Both Ways” sign, barrier channelization at a skewed crossing, and a “Stop Here” pavement marking. Statistically, to reduce risky pedestrian behaviours, pedestrian automatic gates were reported as the most effective. However, pedestrians were found to be less likely to look both ways or stop before entering a crossing when a pedestrian automatic gate or pedestrian flashing light was installed. Interestingly, the “Look Both Ways” sign was found not to be effective in reducing the number of pedestrians entering the crossing immediately after train departures. Research on examples of innovative warning and control devices at LCs include four factors that enabled pedestrians to walk safely through LCs: pedestrian awareness of the crossing, existence of a pedestrian path across the trackway, pedestrian awareness of and ability to see an approaching train, and pedestrian understanding of the potential hazards at LCs [20]. Khattak and Luo [21] investigated pedestrian and cyclist behaviour at a dual-quadrant gated LC located in the residential area of the City of Fremont, Nebraska. The crossing has two sets of railroad tracks, two paved highway lanes, and is equipped with dual-quadrant gates. The gates have flashing lights, crossbuck sign and an audible bell. The crossing is equipped with a crosswalk on its west side for pedestrian use, which is sometimes used by cyclists as well. Most pedestrians and bicyclists use the crosswalk, but a few occasionally use the street to negotiate the crossing. Violations by pedestrians and cyclists were monitored using video surveillance in three installments during the years 2008, 2009 and 2010. Violations were divided into four
groups: 1) passing under descending gates, 2) passing around fully lowered gates, 3) passing under ascending gates, and 4) passing around fully lowered gates between successive trains. During data collection a total of 1,074 non-motorized individuals were observed indulging in 807 violations. On average, 1.70 individuals were observed per crossing event and 1.27 violations per crossing event were noted. Analysis showed that there were no differences in the occurrence of gate-related violations by pedestrians and cyclists. Young children of around 8 years of age or younger were involved in 25% more gate-related violations than older crossing users. Violations increased with the presence of more individuals at the crossing during train crossing events, but the contribution from young children was greater than that from older crossing users. In Holland there were 48 fatal incidents in 1985 and the government policy was to decrease this amount of LC accidents by 50% by the year 2010. In 2006 on 2,724 public LCs of all types there were 4 accidents that took 9 lives and left 11 people injured, while no derailments due to LC accidents occurred. There were 93% of accidents caused by errors of some description by road users. Of these, there were 39% conscious errors. In 53% of accidents the road user did not see the train approaching until impact. Males were substantially more involved in incidents and accidents than females, while more than 30% of those involved belonged to the age group 20–29. The total involvement of age groups peaks between 10 – 59, school and working ages [22]. Reducing pedestrian and cyclist violations at LCs will improve traffic safety, but most technology-based countermeasures (e.g., automatic pedestrian gates, electronic signs) are expensive and difficult to maintain. Other options for that are enforcement and public outreach and proper education.

5 Conclusion

The existing level of adjustment of the traffic infrastructure to current and future growth of bicycle traffic is not sufficient, which can be seen from the presented characteristics of bicycle traffic in the City of Zagreb. The safety at LCs is a complex problem. Apart from technical and technological factors also human behaviour has to be taken into consideration and this is very difficult to predict, monitor and track. Whether referring to accident which resulted from the collision of a train and motor vehicle, cyclist or pedestrian, the consequences are larger by injuries. Research showed that the main cause of collision at LCs is the behaviour of road user participants. This can be largely assigned to risky behaviour of drivers i.e. their lack of attention when driving a vehicle, disregard of traffic regulations and stress. Risky behaviour of motorists, cyclists or pedestrians at LCs is extremely dangerous and mostly results in emergency situations. The road traffic participants are often not aware of potential danger at LCs, and adaptation and response time are often related to implicit impacts on perception and capability of decision making, e.g. stress, fatigue, personal problems, and physical and mental state. The review paper will serve as the basis for further research of design, traffic safety and behaviour of pedestrians and cyclists, and their correlation at LCs in the Republic of Croatia. Finally, apart from technical and technological design solving of the crossings, the systemic activities in terms of education of road motor vehicle drivers, cyclists and pedestrians is of extreme importance, with the aim of upgrading the level of their traffic discipline, culture and awareness about the causes and consequences of risk behaviour at LCs.

Acknowledgements

The research described in this paper has been carried out as part of the scientific project “Research of Measures to Improve the Safety at Level Crossings “, No. 5414, funded by the University of Zagreb. The collected data have been realized in cooperation with the HŽ-Infrastructure, Department for Development and Investment Planning, and the Department of Safety Management System. The authors would like to thank for the cooperation and provided support.
References

[2] Pravilnik o uvjetima za određivanje križanja željezničke pruge i drugih prometnica i za svodenje i određivanje zajedničkoga mjesta i načina križanja željezničke pruge i ceste, NN 121/09, 123/12, Zagreb, 2012.

