HYDROELASTICITY
IN MARINE TECHNOLOGY

Edited by
Š. Malenica, N. Vladimir & I. Senjanović

Published by: VIDICI d.o.o, Velika Rakovica, Samobor, Croatia

September 2015
SPONSORS

Bureau Veritas, France

Global Core Research Center for Ships & Offshore Plants, South Korea

The Society of Naval Architects of Korea, South Korea
PREFACE

During the last three decades hydroelasticity has evolved from a theoretical concept to a mature science impacting all areas of marine technology. There are numerous practical problems/floating structures involving hydroelastic type of hydro-structure interactions:

- Wave induced global vibrations (Springing, Whipping, Ringing…)
- Local hydroelastic impacts (sloshing, slamming…)
- Line dynamics (risers, mooring lines, umbilicals…)
- Flow induced vibrations (VIV, Galloping, VIM…)
- Dynamics of Very Large Floating Structure
- Dynamics of aquaculture structures
- Renewable energy devices dynamic behavior (off shore wind turbines, marine current turbines, wave energy converters…)

...

Compared to the more classical quasi static types of hydro-structure interactions where the hydrodynamic and structural problems can be considered separately, the hydroelastic modeling requires full dynamic coupling in between the hydrodynamic loading and the structural response. This implies much more complex numerical/experimental models and the competences from both sides (hydrodynamic and structure) need to be combined wisely.

The hydroelasticity can be investigated using three main research methods

- Numerical modeling
- Experimental modeling
- Full scale measurements

All three methods have their good and weak points, and none of them can be used exclusively so that strong interactions in between them are necessary to move forward in the understanding of this complex problem. In spite of all the progress made in the past, it is fair to say that still there is lot of modelling challenges remaining and significant effort should be made in order to fully master these phenomena.

Initiated in 1994 by few enthusiasts, the Hydroelasticity conference emerged as a major place for exchange of experience in between worldwide scientists, engineers and designers.

The 7th International Conference on Hydroelasticity in Marine Technology was organized jointly by Bureau Veritas and University of Zagreb and was held in Split (CROATIA) from 16th to 19th of September 2015.

The support of the sponsors: Bureau Veritas, France, Global Core Research Center for Ships & Offshore Plants, South Korea, and The Society of Naval Architects of Korea, South Korea, as well as the grant No. N62909-15-1-C147 provided by Office of Naval Research, USA, is highly acknowledged.
PREVIOUS CONFERENCES

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1994</td>
<td>Trondheim</td>
<td>NORWAY</td>
</tr>
<tr>
<td>2</td>
<td>1998</td>
<td>Fukuoka</td>
<td>JAPAN</td>
</tr>
<tr>
<td>3</td>
<td>2003</td>
<td>Oxford</td>
<td>UK</td>
</tr>
<tr>
<td>4</td>
<td>2006</td>
<td>Wuxi</td>
<td>CHINA</td>
</tr>
<tr>
<td>5</td>
<td>2009</td>
<td>Southampton</td>
<td>UK</td>
</tr>
<tr>
<td>6</td>
<td>2012</td>
<td>Tokyo</td>
<td>JAPAN</td>
</tr>
</tbody>
</table>

INTERNATIONAL STANDING COMMITTEE

T. Y. Chung K IMM SOUTH KOREA
W. C. Cui CSSRC CHINA
C. Dalton University of Houston | USA
R. Eatock Taylor University of Oxford | UK
R. C. Ertekin University of Hawaii | USA
O. M. Faltinsen NTNU | NORWAY
R. Huijsmans TU Delft | NETHERLANDS
J. J. Jensen DTU | DENMARK
M. Kashiwagi Osaka University | JAPAN
A. A. Korobkin University of East Anglia | UK
C. M. Larsen NTNU | NORWAY
K. Takagi University of Tokyo | JAPAN
P. Temarel University of Southampton | UK
W. C. Webster University of California | USA
Y. S. Wu CSSRC | CHINA

LOCAL ORGANIZING COMMITTEE

N. Vladimir University of Zagreb | CROATIA
I. Senjanović University of Zagreb | CROATIA
Š. Malenica Bureau Veritas | FRANCE

TABLE OF CONTENTS

H. Sun, J. B. Helmers
Slamming on an elastically supported body | 1

I. K. Chatzigeorgiou, M. J. Cooker, A. A. Korobkin
Two dimensional wave impact on a perforated cylinder | 15

J. De Lauzon, M. Grgić, Q. Derbanne, Š. Malenica
Improved Generalized Wagner Model for slamming | 29

J. Camilleri, P. Temarel, D. Taunton
Two-dimensional numerical modelling of slamming impact loads on high-speed craft | 43

Z. Z. Hu, T. Mai, D. Greaves, A. Raby
Hydroelastic investigation of extreme wave impact on a truncated vertical wall | 55

T. Bunnik, J. Helder, E. J. De Ridder
Simulation of the flexible response of a fixed offshore wind turbine subject to breaking waves | 65

H. Sagar, J. Ley, B. Moctar
Hydroelasticity effects of wave induced loads on offshore monopile structure | 83

V. A. Squire, F. Montiel
Hydroelastic perspectives of ocean wave / Sea ice connectivity I | 103

F. Montiel, V. A. Squire
Hydroelastic perspectives of ocean wave / Sea ice connectivity II | 115

J. E. M. Mosig, F. Montiel, V. A. Squire
Rheological models of flexural-gravity waves in an ice covered ocean on large scales | 127

S. Rupprecht, M. A. Peter, L. G. Bennetts, H. Chung
Towards a model for wave attenuation through a rough floating elastic plate | 139
K. Shishmarev, T. Khabakhpasheva, A. Korobkin
Hydroelastic waves caused by a load moving along a frozen channel 149

I. Senjanović, M. Tomić, N. Vladimir
An advanced procedure for hydroelastic analysis of very large floating airport exposed to airplane load 161

S. Y. Han, Š. Malenica, Y. J. Kim, B. J. Kim, S. H. Kwon
Higher order hydroelastic behavior of an annular circular plate 177

S. De, B. N. Mandal
Water wave scattering by two submerged equal vertical plates 191

R. Maiti, U. Basu
Generation and propagation of water wave on a running stream in presence of an ice sheet due to bottom disturbance 203

Rapid prototyping of flexible models – a new method for model testing? 215

S. Y. Hong, K. H. Kim, B. W. Kim
An experimental investigation on bow slamming loads on an ultra-large containership 229

K. H. Kim, B. W. Kim, S. Y. Hong
Experimental study on correlation between slamming impact and whipping vibration for an ultra-large containership 245

B. W. Kim, S. Y. Hong, K. H. Kim
Resonant and non-resonant whipping responses of a container model ship in regular and irregular waves 257

E. Orlowitz, A. Brandt
Operational modal analysis of a RO-LO vessel under different speed conditions 267

D. Dessi, E. Faiella
Analysis of modal damping in elastic floating structures 279

G. Storhaug, A. Kahl
Full scale measurements of torsional vibrations on Post-Panamax container ships 293
H. G. Ki, S. G. Park, I. H. Jang
Full scale measurement of 14k TEU containership

G. Storhaug
The consequence of whipping and springing in fatigue loading of container ships

M. K. Wu
Fatigue analysis for a high-speed vessel with hydroelastic effects

S. S. Bennett, D. A. Hudson, P. Temarel
The effect of abnormal wave sequences on 2D hydroelastic predictions of global loads

S. Zhu, T. Moan
Effect of heading angle on wave-induced vibrations and extreme vertical bending moments in a ultra large container ship model

I. M. Vincent Andersen, J. J. Jensen
Extreme value prediction of the wave-induced vertical bending moment in large container ships

Y. Kim, I. G. Ahn, S. G. Park
On the second order effect of the springing response of large blunt ship

S. Seng, Š. Malenica, J. J. Jensen, J. De Lauzon
On the modelling of the dynamics of elastically deformable floating structures

T. Inoue, M. Y. Matsuo, C. K. Rheem, H. Sakaguchi, T. Katsui
Preliminary study of whirl motions of drill pipe

Consideration of hydrodynamic effect on drill pipe stick-slip

Y. Kim, J. H. Kim, Y. Kim
Development of a high-fidelity procedure for the numerical analysis of ship structural hydroelasticity

M. Kashiwagi, S. Kuga, S. Chimoto
Time- and frequency-domain calculation methods for ship hydroelasticity with forward speed

Š. Malenica, N. Vladimir, Y. M. Choi, I. Senjanović, S. H. Kwon
Global hydroelastic model for liquid cargo ships
S. S. Bennett, A. B. Phillips
On the hydroelastic modelling of damaged ships 507

J. H. Hwang, J. S. Park, S. I. Won, B. H. Jung
Ultimate strength assessment of ultra large container ships considering hydroelastic responses 519

P. Yang, X. Gu, C. Tian, J. Ding
3D hydroelastic response of a large bulk carrier in time domain 529

P. Yang, X. Liu, J. Ding, Z. Wang, Y. Ye, X. Wu, W. Chen, W. Mo, Z. Zong, C. Tian, Y. Wu
Hydroelastic responses of a VLFS in the waves influenced by complicated geographic environment 541

H. I. Im, N. Vladimir, Š. Malenica, H. R. Ryu, D. S. Cho
Fatigue analysis of HHI SkyBench™ 19000 TEU ultra large container ship with springing effect included 561

M. Craig, D. Piro, L. Schambach, J. Mesa, D. Kring, K. Maki
A comparison of fully-coupled hydroelastic simulation methods to predict slam-induced whipping 575

J. Oberhagemann, V. Shigunov, M. Radon, H. Mumm, S. I. Won
Hydrodynamic load analysis and ultimate strength check of an 18000 TEU containership 591

M. Robert, C. Monroy, G. Reliquet, A. Drouet, A. Ducoin, P. E. Guillerm, P. Ferrant
Hydroelastic response of a flexible barge investigated with a viscous flow solver 607

P. A. Lakshmarayannana, P. Temarel, Z. Chen
Coupled fluid-structure interaction to model three-dimensional dynamic behaviour of ship in waves 623

S. (Peter) Kim
Nonlinear time domain simulations of slamming, whipping and springing loads on a containership 637

Preliminary vibration analysis on a ULCS by hydroelastic approach 651

K. H. Lee, P. S. Lee
Nonlinear hydrostatic analysis of deformable floating structures 661
I. Chatjigeorgiou
Double frequency response of catenary risers 673

C. Béguin, S. Etienne, B. Molin
Rotational galloping of square and bundle cylinders in cross-flow at low Reynolds numbers 687

L. T. T. Nguyen, P. Temarel, J. Chaplin
Flow around two circular cylinders in tandem with 2D RANS: Fixed and free oscillation 705

D. Dessi
Fluid-structure interaction model for elastically moored barges 717

M. S. Zou, Y. S. Wu, C. Sima
Time domain three-dimensional hydroelastic analysis of acoustic responses of a floating structure 729

D. M. Skene, L. G. Bennetts, H. M. Meylan, A. Toftoli, A. Alberello, C. Cavaliere, J. Elsnab, J. P. Monty
Overwash of a floating thin elastic plate by regular water waves: A theoretical model and laboratory experimental measurements 739

Z. He, O. M. Faltinsen, A. Fredheim, T. Kristiansen
The influence of fish on the mooring loads of a floating fish farm 753

K. Iijima, M. Sakai, M. Fujikubo
Dynamic collapse behaviour of VLFS subjected to extreme vertical bending moment 765

D. S. Cho, B. H. Kim, J. H. Kim, N. Vladimir, T. M. Choi
Application of the assumed mode method to vibration analysis of rectangular plate structures in contact with fluid 777