we provide a brief overview of the first techniques for direct, real-time observation of mechanochemical reactions by milling. Whereas mechanisms and kinetics of solid-state reactions induced by temperature or pressure have been extensively investigated, transformations of materials under continuous impact in a milling assembly remain largely unexplored and based on ex situ studies. The recent introduction and development of techniques for in situ monitoring of milling reactions by synchrotron X-ray powder diffraction and Raman spectroscopy has enabled the first direct insight into milling mechanochemistry, opening a new area for studies of chemical reactivity. So far, these techniques have revealed rapid, multistep reaction mechanisms and metastable intermediates that are impossible or difficult to observe or isolate in solution and have highlighted shortcomings of ex situ mechanistic studies. These pioneering advances also highlight the low level of mechanistic understanding and future challenges in developing a clear mechanistic picture of physicochemical transformations by milling.
compared to other types of solid-state reactivity, such as heat-, light-, or pressure-induced transformations. This can be related to the, until recently, largely impassable difficulty to directly monitor physical and chemical transformations taking place under violent impact of rapidly moving grinding media, made of steel, ceramic (e.g., zirconia, alumina), or tungsten carbide. As pointed out by Drebuschak and co-workers, 31 "It is a challenge to understand the processes taking place in a powder sample during its grinding in a mill, or compacting, since one can neither measure local temperature, pressure, shear stresses, nor follow the changes in the diffraction patterns or vibrational spectra in situ." As a result, kinetics and mechanisms of reactions by milling have been investigated largely by ex situ (stepwise) approaches, wherein milling is periodically interrupted and the reaction mixture analyzed by suitable solid-state techniques, including powder X-ray diffraction (PXRD), Raman spectroscopy, surface area measurements, thermal analysis, or solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It is, however, becoming increasingly clear that mechanistic ex situ analysis is limited due to the often not realized possibility that chemical or structural transformations may continue even after mechanical treatment or that reactivity of mechanically activated samples may be changed or promoted by the surrounding atmosphere. An example of the latter is the formation of Schiff bases by grinding of aldehydes and amines, which has been known since at least the 1980s but was only recently established to be catalyzed by air moisture. This example also highlights how reactions between solids can contrast conventional chemical intuition; aldime condensation in solution is reversed by water but catalyzed by moisture in the solid state. It is generally accepted that mecanochemical reactions involve activation of reactants. The nature of such mecanochemical activation is complex and can involve different processes, from creation of highly reactive nanoparticles and intimate mixing of reactants at the atomic or molecular scale to structural defects and amorphization. For hard ionic materials, such as metal oxides, activated phases are kinetically stable and relax only at high temperatures or other types of stress. This permits observation of activated phases at room temperature, for example, the formation of core-shell particles in which the crystalline core of the starting oxide material is surrounded by an activated phase in the form of a nanometer-thick layer of an amorphous or otherwise defective material (Figure 1a). For softer organic and metal-organic materials, such activated forms are less stable and, due to rapid relaxation, are often difficult to detect by ex situ analysis. For example, the appearance of an amorphous phase as the intermediate during mecanochemical cocrystallization of saccharin (sac) and carbamazepine (cbz) to form the pharmaceutical cocrystal (cbz)(sac) was demonstrated only indirectly, through the application of cryomilling techniques in which low temperature hindered the otherwise rapid crystallization of the intermediate (Figure 1b). Rapid relaxation of activated intermediates can interfere with the stepwise analysis of a milling reaction, as evidenced by...
mechanochemical complexation of cadmium chloride with cyanoguanidine, which gives different product compositions if milling is periodically interrupted. The described examples illustrate that in-depth understanding of mechanochemical reactivity necessitates direct and in situ reaction monitoring. So far, such real-time monitoring has been possible only for a small number of milling transformations, notably those involving gaseous reactants or products or highly exothermic reactions (mechanochemically induced self-sustaining reactions, MSRs), for which reaction monitoring was enabled by observing changes in pressure or temperature within the milling assembly, respectively. Although highly informative, such measurements still do not provide any detailed information on the...
In Situ and Real-Time Monitoring of Mechanochemical Reactions by Synchrotron PXRD. In 2013, our group reported the first generally applicable technique for real-time observation of transformations of solid phases during milling by in situ PXRD of synchrotron radiation. The technique relies on X-rays of sufficiently high energy ($E \approx 90$ keV, $\lambda \approx 0.1$ Å) to pass through the walls of the oscillating reaction vessel, interact with the milled sample, and be detected after leaving the vessel (Figure 2a). The technique was developed using a Retsch MM200 shaker mill modified to allow mounting a custom-made milling jar (≈14 mL volume) in the path of the incident X-ray beam. Milling was achieved by horizontal oscillatory motion of the milling jar perpendicular to the incident beam and the diffracted radiation detected using a two-dimensional detector with an exposition of 4 s per image. With the mill operating at 30 Hz, a single diffraction pattern provided a snapshot of the reaction mixture over 120 oscillations of the milling jar, enabling monitoring with resolution in seconds with a high level of sample homogeneity. Although the technique was applicable to jars made of conventional materials, such as steel or aluminum, poly(methyl)metacrylate (PMMA, also known as Perspex) was found to be the material of choice due to its good mechanical properties, amorphous structure, and low absorption for utilized X-rays. The first application of this in situ monitoring technique was on the formation of zeolitic imidazolate frameworks (ZIFs) by neat milling, LAG, and ILAG of zinc oxide with imidazole (HIm), 2-methylimidazole (HMeIm), or 2-ethylimidazole (HEtIm) (Figure 2b). The reaction mechanism (Figure 2d) sigmoidal pattern characteristic of a nucleation and growth process (Figure 2c). Product formation was monitored through the change in intensity of the characteristic (211) reflection of ZIF-8, which, for both LAG and ILAG approaches, exhibited a sigmoidal pattern characteristic of a nucleation and growth mechanism (Figure 2d–f). Product formation by ILAG, which relied on the use of ammonium salts as catalytic protic additives, was considerably faster and gave maximum conversion in 4 min. The analogous LAG reaction led to maximum conversion after 25 min of milling.

A more complex reaction mechanism was observed for the ILAG reaction of ZnO and HEtIm, which proceeded in a sequence of steps generating first the low-density Zn(HEtIm)$_2$ framework with zeolite ρ (RHO) topology that subsequently converts to more dense analcime topology structure (ANA) and, ultimately, to a close-packed framework of quartz (qtz) topology (Figure 3a). The stability of a zeolitic structure is inversely related to its density, which is often expressed as T/V, that is, the ratio of the number of tetrahedral sites (T) per unit cell volume (V). The T/V ratios for the RHO → ANA → qtz mechanochemical sequence reveal that the transformation is consistent with Ostwald’s rule of stages, wherein the thermodynamically stable product is formed in a sequence of metastable phases, representing an analogy to transformations seen in zeolite chemistry. The reaction sequence is also consistent with previously noted formation of low-density or highly solvated materials as early intermediates in the mechanochemical formation of coordination polymers and metal–organic frameworks (MOFs). Monitoring of time-dependent changes in intensities of characteristic X-ray reflections for each crystalline phase revealed how a reaction is affected by different amounts of a liquid additive, expressed as η, that is, the ratio of liquid volume to the mass of solid reactants (Figure 3b). For
the transformation of ZnO to qtz-Zn(EtIm)$_2$, reaction profiles were strikingly different as decreasing η led to increasingly shorter lifetimes of the ANA-Zn(MeIm)$_2$ intermediate. At the lowest explored η value of 0.05 μL mg$^{-1}$, the intermediate did not appear, while for the highest explored η of 0.28 μL mg$^{-1}$, it persisted throughout most of the experiment. This first real-time observation of a multistep mechanochemical reaction clearly reveals a direct influence of the liquid and its amount on the reaction mechanism, contrasting the view of the liquid being simply a reaction "lubricant".

Quantitative In Situ PXRD Monitoring of Mechanochemical Reactions. X-ray diffraction data collected over the course of a mechanochemical reaction should, in principle, allow quantitative reaction mixture analysis using the Rietveld method. However, besides problems pertinent to mechanosynthesis of porous MOFs, where the contribution of included guest molecules to X-ray scattering is generally not known and is likely to change as the reaction progresses, mechanochemical reactions often comprise a noncrystalline component that scatters X-rays but does not produce a diffraction signal. Quantitative reaction monitoring by PXRD is thus hindered by the inability to directly determine amorphous fraction of the reaction mixture, as well as by variations in the diffracted intensity caused by the nonuniform, time-dependent distribution of the sample in the reaction vessel (Figure 4a,b). Averaging of the diffraction signal over a few seconds, a typical time resolution required to capture fast reactions, was not enough to eliminate random variations in the amount of the sample exposed to the incident X-ray beam. Combined with variation in absorption of X-rays by the steel milling media, this leads to random artifacts in diffracted intensity (Figure 4a,b).

These effects can be remedied by adding microcrystalline silicon into the reaction mixture as an internal scattering standard. Normalization of the in situ collected diffraction data relative to the silicon diffraction signal revealed fast homogenization of the reaction mixture and enabled its quantitative analysis during milling. Rietveld analysis of LAG and IL AG reactions of ZnO and HIm yielding the nonporous Zn(Im)$_2$ framework with zinc iodide (zni) topology revealed that LAG with ethanol (EtOH) as the grinding liquid is slower than the corresponding IL AG reaction conducted with NH$_3$NO$_3$ additive (Figure 4c,d). The additive accelerated the depletion of ZnO, as well as HIm, the latter being in agreement with a proposed reaction model involving activation.

Real-time observation of a multistep mechanochemical reaction clearly reveals a direct influence of the liquid and its amount on the reaction mechanism, contrasting the view of the liquid being simply a reaction ‘lubricant’.

Figure 5. Discovery of a metastable MOF through in situ reaction monitoring: (a) time-resolved X-ray diffractogram for the LAG reaction of ZnO and HMeIm with aqueous acetic acid as the milling liquid, with * denoting the diffraction signal of a silicon standard and (b) corresponding plot for the evolution of each phase. (c) Representation of the observed transformation. (d) Time-resolved X-ray diffractogram for LAG reaction of ZnO and HMeIm in the presence of aqueous acetic acid and (e) a corresponding plot of the evolution of each phase, demonstrating that the reaction can also take place without participation of the kat-Zn(MeIm)$_2$ intermediate. Individual images adapted from ref 25 with permission from the author.

DOI: 10.1021/acs.jpclett.5b01837
J. Phys. Chem. Lett. XXXX, XXX, XXX−XXX
The disappearance of \textbf{HIm} reflections in the PXRD pattern of the milled reaction mixture was attributed to several parallel processes, including amorphization and chemical reaction with ZnO. Loss of ZnO, on the other hand, was significantly slower. As amorphization of an ionic binary oxide by milling in a relatively soft PMMA jar is not likely to be significant, the rate of ZnO disappearance was assumed to be largely due to reaction with \textbf{HIm} and, therefore, suitable for assessing the kinetics of the chemical reaction underlying ZIF formation. Surprisingly, modeling of the loss of ZnO content revealed excellent fit to the first-order reaction rate law (Figure 4e). The ability to model a mechanochemical reaction using rate laws established for reactions in solution speaks in favor of a pseudofluid model of mechanochemical reactivity, proposed by the James group.

Perhaps the most striking result of quantitative reaction monitoring is the evaluation of amorphous content in the milled reaction mixture. Upon ILAG and LAG synthesis of \textit{zni-Zn(Im)}$_2$, the amorphous content rapidly reached a steady state of 30 or 35\% by weight, respectively (Figure 4c,d). In contrast, ex situ analysis for the LAG reaction revealed no more than 12\% wt \% of amorphous phase. The discrepancy between amorphous contents observed by Rietveld assessment based on in situ and ex situ diffraction data was explained by rapid relaxation of the amorphous phase, highlighting how delays incurred during sample preparation and analysis can hinder stepwise mechanistic studies. Observation of high amorphous content during LAG contrasts with ex situ studies in which the liquid additive was found to enable the formation of highly crystalline products. It is, however, supportive of a previously proposed model for mechanochemical interconversion of MOFs mediated by an amorphous phase.

Monitoring of mechanochemical amorphization was key to the recent discovery of a topologically novel MOF. The LAG reaction of ZnO and \textit{HMeIm} in the presence of aqueous acetic acid led to almost instantaneous formation of ZIF-8, which was followed by its complete amorphization, evidenced by a featureless PXRD pattern obtained after \(\sim\)20 min of milling. Surprisingly, further milling led to recrystallization of the amorphous matrix into a new polymorph of ZIF-8 with a previously unknown katsenite (\textbf{kat}) topology (Figure 5a–c).

The \textbf{kat} phase is metastable and completely converts to a close-packed diamondoid (\textbf{dia}) topology structure upon further milling (Figure 5c).

While the isolated \textbf{kat} framework readily converts to the \textbf{dia} structure upon heating to 40 °C or exposure to solvents, it can be safely stored at room temperature for months, which enabled characterization by PXRD structure determination, solid-state NMR spectroscopy, and other techniques. The synthesis of the \textbf{kat} phase was only partially reproducible as the mechanochemical crystalline \textrightarrow amorphous \textrightarrow crystalline transformation sometimes gave directly the \textbf{dia} product, providing tentative evidence for the importance of nucleation effects during milling transformations (Figure 5d,e).

\textbf{In Situ PXRD Monitoring of Pharmaceutical Cocrystallization.} Applicability of in situ PXRD reaction monitoring to weakly scattering organic materials was evaluated on the mechano-thesis of pharmaceutical cocrystals. Monitoring of neat milling of \textit{cbz} and \textit{sac} revealed the gradual disappearance of X-ray reflections for both reactants, directly confirming amorphization asserted by the Rodriguez-Hornedo group through cryomilling experiments (Figure 6a). In contrast, LAG of the two reactants with acetonitrile as the grinding liquid led to quantitative cocrystal formation concomitant with the disappearance of reactants within minutes, demonstrating the speed and simplicity of mechanochemical cocrystallization in comparison to solution techniques (Figure 6b). The application of the Scherrer method also enabled the direct and in situ insight into trends in particle size changes for milled reaction products and reactants (Figure 6c). Partial amorphization of starting materials upon mechanochemical cocrystallization was also recently observed by Fischer and co-workers upon in situ
A more complex cocrystallization mechanism was observed for the neat grinding reaction of nicotinamide (na) with suberic acid (sub) in a respective 2:1 ratio, wherein the formation of the (na)₂(sub) cocrystal took place via the (na)(sub) intermediate that appears ~1 min into milling and completely converts to the stoichiometrically determined product (na)₂(sub) within ~40 min (Figure 7a,b). These observations are consistent with the initial ex situ study,61 which noted the presence of a grinding liquid on the reaction course. However, in situ reaction monitoring also permitted the analysis of the corresponding LAG reaction that revealed the unexpected formation of an unknown phase that was previously established to be too fast for ex situ analysis.

Figure 7. Real-time and in situ PXRD monitoring of cocrystallization of nicotinamide (na) and suberic acid (sub): (a) fragments of structures of the (na)(sub) and (na)₂(sub) cocrystals; (b) time-resolved diffractogram for mechanochemical stepwise formation of (na)(sub) by neat milling; and (c) the corresponding LAG reaction, with the diffraction signals of the metastable short-lived intermediate highlighted on individual diffractograms. Images adapted from ref59 with permission from the author.

Real-Time Monitoring of Mechanochemical Reactions by Raman Spectroscopy. A major limitation of studying mechanochemical reactions by in situ X-ray diffraction is the need for a synchrotron source. Also, although PXRD analysis is highly informative with respect to transformations of bulk crystalline phases, it provides little or no insight into amorphous materials or the molecular-level transformations that are critical in early stages of mechanochemical reactions. However, information on molecular-level complexation, of particular importance for understanding the role and behavior of liquid additives in LAG and ILAG transformations, might be readily available through different spectroscopic techniques, such as infrared and Raman spectroscopy.9 With that in mind, we introduced a methodology for in situ and real-time monitoring of mechanochemical reactions using Raman spectroscopy (Figure 8a).4 Whereas the use of conventional steel- or ceramic-based milling equipment represents an insurmountable obstacle for spectroscopic investigations, introducing optically translucent PMMA milling vessels also provided access to reaction monitoring with inexpensive, readily available laboratory Raman spectroscopy equipment. This technique was recently adapted into a tandem monitoring methodology using PXRD and Raman spectroscopy (Figure 8b).5

The first application of this novel spectroscopic monitoring technique addressed the formation of selected model coordination polymers and organic cocrystals. For example, Raman monitoring clearly revealed the mechanochemical complexation of cadmium chloride and cyanoguanidine (cenge) to form either the three-dimensional polymer Cd₃(cenge)Cl₂ or the two-dimensional one Cd(cenge)₂Cl₂ (Figure 8c).6 The formation of each individual coordination polymer and the disappearance of cenge reactant was readily observed through changes in absorption bands located at around 2200 cm⁻¹ associated with the cenge nitride functionality (Figure 8d). The disappearance of cadmium chloride reactant and formation of product could also be readily followed via changes in spectral bands at around 200 cm⁻¹, associated with changes in the coordination environment of the metal ion (Figure 8d). These spectral regions provided excellent handles to study the effect of reactant stoichiometry, the choice of milling media, and the presence of a grinding liquid on the reaction course. Importantly, in situ monitoring of coordination polymer synthesis provided different results than our earlier ex situ study; whereas stepwise analysis revealed the formation of the three-dimensional Cd(cenge)Cl₂ structure as the kinetic intermediate in the synthesis of the two-dimensional Cd₃(cenge)Cl₂, Raman reaction monitoring revealed the direct formation of Cd(cenge)₂Cl₂. This discrepancy highlights the effects of relaxation and sample aging on stepwise reaction analysis.
Raman spectroscopy is also a convenient method for monitoring of milling organic transformations, which can often involve short-lived amorphous or eutectic liquid intermediates not readily detectable by PXRD. For example, Raman spectroscopy enabled monitoring the mechanochemical reaction of an acyl azide with an aniline by changes in resonances of the product amide group and the reactant carbonyl group (Figure 9a). The reaction could also be followed by reduction in the intensity of the Raman resonance of the reactant azide group antisymmetric stretching at 2136 cm\(^{-1}\). Monitoring of the same reaction in the presence of different organic liquid additives revealed a clear correlation between LAG reaction time and the basicity of the organic liquid, expressed as Gutmann’s donor number (Figure 9b). Importantly, no correlation was observed between the reaction times and solubilities of participating solids in respective liquids or its other properties, such as molecular dipole moment or relative permittivity. Sensitivity of Raman spectra to changes in molecular structure was demonstrated for in situ monitoring of the mechanochemical C–H bond activation involving palladium(II) acetate and the 4-amino-4′-nitroazobenzene (Figure 9c). Raman spectroscopy clearly revealed the formation of a monopalladated intermediate on the way to a bis(cyclopalladated) product. Importantly, the analysis of changes in stretching resonances of the C\(_{aromatic}\)–Nazo and Nazo\(\equiv\)Nazo bonds revealed that the intermediate formation was fully regioselective, with the first cyclopalladation step taking place on the 4-dimethylamino portion of the molecule.

Fundamental differences between LAG and reactions in solution were demonstrated through real-time Raman spectroscopy monitoring of thiocarbamoylation of anilines using bis(benzotriazolyl)methanethione (Figure 9d). In solution, these reactions yield thioureas through N-thiocarbamoylbenzotriazole intermediates deemed impossible to isolate due to rapid dissociation into isothiocyanates. Unexpectedly, these intermediates were readily observable by in situ Raman monitoring during mechanosynthesis, which was also optimized to quantitatively yield these elusive molecules, enabling their full characterization (Figure 9e) and application as bench-stable alternatives to toxic isothiocyanates. Although readily prepared by LAG, the N-thiocarbamoylbenzotriazoles rapidly dissociated upon dissolution, highlighting a difference in...
Combined In Situ X-ray Diffraction and Raman Spectroscopy

Reactivity of a liquid when used as a low-η additive in LAG, as compared to being used as a bulk solvent.

The herein presented overview reveals the development of methodologies for in situ and real-time monitoring of mechanochemical milling reactions as a new and highly dynamic field. Introduced only 2 years ago as a synchrotron X-ray diffraction technique accessible to a small number of research teams, real-time monitoring rapidly expanded to include Raman spectroscopy, as well as the combined Raman/PXRD technique. These new research tools are now being deployed by different research groups to address the long-standing and previously inaccessible fundamental questions of mechanochemical milling reactions, such as the rate of transformations, appearance of elusive intermediate phases and complexation in amorphous or liquid phases. The new insight into mechanochemical reactivity revealed an unexpectedly dynamic environment involving new framework architectures, polymorphs, and molecular species that are not accessible through conventional solution-based techniques. These exciting discoveries, however, represent only the tip of the iceberg of the new (mechano)chemical environment that has been unlocked for studying. A number of fundamental concepts underlying mechanochemical reactivity still remain elusive, such as the balance of input energy and frictional heating, the impact of temperature and mechanically generated “hot spots” on reactivity,71 the nature of mechanochemical activation, or the molecular-level mechanisms of even the chemically simplest transformations, such as amorphization, polymorph transformation, or cocrystallization. Another important area of mechanochemistry that is of high technological importance and is likely to be probed in the future are structural defects and a detailed view of particle mixing and comminution.72 Addressing these questions will require not only a new set of in situ monitoring tools, complementary to the existing ones, but also the development of modeling73 and theoretical approaches to be closely integrated with arising experimental work. In the context of advancing experimental designs, we are most interested in expanding the PXRD reaction monitoring technique to address the structural evolution of amorphous phases through pair distribution function (PDF) analysis, already used by Cao et al. to elucidate the structure of amorphous material made by neat milling of ZIF-8.77 We also foresee considerable benefits arising from fluorescence emission spectroscopy, a scattering technique that is operationally similar to Raman spectroscopy but can provide considerably more insight into the behavior and structure of amorphous phases, as demonstrated by ex situ studies of mechanoluminescent systems. In that context, it is worth mentioning the recent...
successful application of fluorescence emission spectroscopy for in situ investigation of solid-state crystallization of amorphous indomethacin and solid-state NMR spectroscopy monitoring of pharmaceutical cocystalization in premixed mixtures. In the context of modeling mechanochemical reactions, recently made accessible techniques for discrete element modeling of mechanical motion inside of the milling assembly hold great promise for resolving technologically important problems of scaling-up and optimizing the input and distribution of energy in mechanochemical processes. It is our firm belief that understanding mechanochemical reactions at a molecular scale is impossible without sophisticated techniques for modeling the structure and dynamics of solids. Significant strides in that respect have recently been made, and DFT approaches were already successfully employed to rationalize the behavior of mechanochemical reversible covalent reactions.

AUTHOR INFORMATION

Corresponding Author

Notes

The authors declare no competing financial interest.

Biographies

Krunoslav Užarević obtained his Ph.D. from the University of Zagreb and has been a Scientific Associate at Ruder Bošković Institute, Croatia since 2012. He is currently a NewFellPro Research Fellow at McGill University. His research deals with mechanochemistry of solid-state reactivity, molecular recognition, and C−H bond activation.

Ivan Halasz finished his B.Sc. and Ph.D. degrees at the University of Zagreb, followed by a postdoctoral stint with R. E. Dinnebier at the Max Planck Institute for Solid-State Research. He has been a faculty member at Ruder Bošković Institute, Croatia, since 2012. His interests include solid-state reactivity, mechanochemistry, and di­fraction.

Tomislav Friščić obtained his B.Sc. from the University of Zagreb (2001) and Ph.D. from the University of Iowa (2006). Following positions as a postdoctoral researcher (2006) and Herchel Smith Research Fellow at the University of Cambridge (2008), he joined McGill University (2011) where he is an Assistant Professor and William Dawson Scholar. His research interests include developing solid-state reactions for sustainable synthesis. http://friscic.research.mcgill.ca/

ACKNOWLEDGMENTS

We acknowledge the financial support of the NSERC Discovery Grant and the Canada Foundation for Innovation (CFI). K.U. is supported by the European Commission and the Croatian Ministry of Science, Education and Sports from the Marie Curie FP7-PEOPLE-2011-COFUND program NEWFELPRO, Grant Agreement No. 62. We acknowledge Dr. F. Emmerling, Bundesanstalt für Materialforschung und -prüfung, Berlin, for providing the image used in Figure 8b.

REFERENCES

Tumanov, I. A.; Achkasov, A. F.; Boldyreva, E. V.; Boldyrev, V. V. Following the products of mechanochemical synthesis step by step. *CrystEngComm* 2011, 13, 2213−2216.

