MEMs, FET and PIN RF Switching Devices and Circuits for Reconfigurable Antennas

Juraj Bartolic
University of Zagreb (Croatia)

Part 1: MEMS, FET AND PIN RF SWITCHING DEVICES AND CIRCUITS

Outline

• Semiconductor switching devices
 Basic properties of PIN diode and FETs in RF switching applications
 ➢ Comparison of semiconductor switches

• MEMS as RF Switches
 ➢ What are MEMS?
 ➢ Why RF MEMS?
 ➢ Advantages over conventional technologies
 ➢ MEMS resistive and capacitive switches
 ➢ MEMS modelling
 ➢ MEMS applications and conclusions
PIN diode

Typical values of PIN diode parameters

<table>
<thead>
<tr>
<th>Layer</th>
<th>width, l [cm]</th>
<th>area, A [cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>layer p⁺</td>
<td>0.76×10^{-3}</td>
<td>2.0×10^{-3}</td>
</tr>
<tr>
<td>layer i</td>
<td>7.6×10^{-3}</td>
<td>3.12×10^{-3}</td>
</tr>
<tr>
<td>layer n⁺</td>
<td>10.2×10^{-3}</td>
<td>4.5×10^{-3}</td>
</tr>
<tr>
<td>metallisation</td>
<td>0.127×10^{-3}</td>
<td>4.5×10^{-3}</td>
</tr>
<tr>
<td>heat sink</td>
<td>10.2×10^{-2}</td>
<td>12.9×10^{-3}</td>
</tr>
</tbody>
</table>
PIN diode

Resistance of the intrinsic layer

\[R_i = \frac{l^2}{2 \mu_{sp} I_0 \tau_r} \]

where:

\[\mu_{sp} = \frac{2 \mu_e \mu_h}{\mu_e + \mu_h} \]

ambipolar mobility

\(l = \) chip length
\(A = \) chip area
\(\tau_r = \) life time of recombinde carriers

For silicon diodes with \(\mu_e = 1350 \text{ cm}^2/(\text{Vs}) \) and \(\mu_h = 400 \text{ cm}^2/(\text{Vs}) \) the ambipolar mobility \(\mu_{am} \) equals 620 \text{ cm}^2/(\text{Vs})

PIN diode

Microwave resistance of a typical PIN diode

Unitrode Semiconductor Products Division
PIN diode

Typical packages

microwave packages

PIN diode

Typical packages

LID package
lidless inverted device

beam-lead package
PIN diode

Equivalent circuits:

PIN switches

Series and shunt switch attenuation (general formulas)

\[
A = 20 \log \left| \frac{2Z_0}{2Z_0 + Z_D} \right| \quad \text{(series switch)}
\]

\[
A = 20 \log \left| \frac{2Z_0}{2Z_0 + Z_D} \right| \quad \text{(shunt switch)}
\]

where \(Z_D \) is the total impedance of the PIN diode
PIN switches

Series SPST switch

Isolation \(\approx 10 \log \left(1 + \frac{1}{(4\pi fCZ_0)^2}\right)\) dB

Insertion Loss \(= 20 \log \left(1 + \frac{R_s + R}{2Z_0}\right)\) dB

Power dissipated in the diode:

\[
P_{ds} = \frac{2R_sZ_0}{(2Z_0 + R_s)^2}P_{av} = \frac{R_s}{2Z_0 + R_s}P_{av}
\]

where \(P_{av}\) is the maximum available power:

\[
P_{av} = \frac{V_0^2}{4Z_0}
\]

PIN switches

Shunt SPST switch

Insertion Loss \(\approx 10 \log \left(1 + \frac{1}{(\pi fCZ_0)^2}\right)\) dB

Isolation \(\approx 20 \log \left(1 + \frac{Z_0}{2R_s}\right)\) dB

Power dissipation:

forward bias \(P_{ds} = \frac{4R_sZ_0}{(Z_0 + 2R_s)^2}P_{av}\)

reverse bias \(P_{ds} = \frac{Z_0}{R_s}P_{av}\)

where \(P_{av}\) is the maximum available power:

\[
P_{av} = \frac{V_0^2}{4Z_0}
\]
FET switches

Basic principle

Low channel resistance – ON state

High channel resistance – OFF state

FET switches

MESFET equivalent circuit and symbol
FET switches

- **FET transfer characteristic**: I_{DS} driven by V_{GS} for given V_{DS} located in the saturation region
- Resistance r_{DS} controlled by the gate bias (V_{GS})

![Diagram showing FET transfer characteristic]

- **Operating points**:
 - High conductivity (low resistance) operating point
 - Low conductivity (high resistance) operating point

![Diagram showing high and low conductivity operating points]

- **Isolation** in FET switches degrades at higher frequencies due to the effect of drain-to-source capacitance (C_{ds})
- **Example**: drain-to-source impedance = 320 Ω at 10 GHz resulting in an isolation of 10.5 dB between drain and source, with additional degradation at higher frequencies

![Diagram showing drain-to-source impedance and capacitance]

OFF state

$C_{ds} = 0.05$ pF
FET switches

- Gate voltage switches the FET from a small resistive device ($r_{ds\text{ON}}$) to a small capacitive device ($C_{ds\text{OFF}}$).
- Intended to operate passively (no gain).
- Typical $V_{ds}=0$ V (easy to bias).
- Like PIN diodes, the FET switch can be configured in series with transmission line (drain and source act as input or output and vice versa), or shunt with the grounded source.

FET switches

Different designs

Series SPDT* switch

Shunt SPDT switch

*Single Pole Double-Throw

Combine series and shunt switches for better performances.
Main performance specifications for RF switches

- Frequency bandwidth (highest and lowest frequency)
- Switching speed (speed of moving to 90% ON or 90% OFF)
- Linearity (pollution of adjacent channels)
- Power handling (RF)
- Power consumption (DC)
- Insertion loss
- Isolation (vital in measurement systems)
- SWR (matching)
- Expected lifetime (big consideration for MEMS switches)
- Driver requirements: DC current / DC voltage, negative polarity

Figure of Merit (FoM) of RF switches

- Rates the switching characteristics of different switch devices
- Figure of Merit = \(1/(2\pi C_{\text{OFF}} R_{\text{ON}})\)
- Higher FoM yields greater bandwidth
- Rule of thumb: FoM/100 yields the highest operating frequency
- FoM of PIN diode >> FoM of FET (Why? Lower OFF-state capacitance for a given ON-resistance)
Figure of Merit (FoM) of RF switches

- PIN diode: $C_{\text{OFF}} \approx 50 \text{ fF}$, $R_{\text{OFF}} \approx 3 \Omega$ @ 5 mA and 1.7 Ω at 20 mA
 - FoM ≈ 1900 GHz
- MESFET switch: $C_{\text{OFF}} \approx 400 \text{ fF}$, $R_{\text{OFF}} \approx 1.5 \Omega$ @ 5 mA
 - FoM ≈ 265 GHz

- MESFET switches work well up to about 26 GHz
- PHEMT switches work well up to about 40 GHz
- PIN diodes work well up to 180 GHz

RF switch modelling

- Use simple models when applicable: resistor in the ON-state (low resistance) and capacitance (low) in the OFF-state
- Electromagnetic simulators can integrate circuit models
 - only valid in a transmission line environment
- OFF-capacitance of a PIN diode is a function of reverse voltage
- More negative voltage yields less capacitance
- Ground inductance and bond-wire inductance should be accounted for
- At X-band frequencies and above, more complex models should be employed:
 - distributed properties of switch devices
 - transmission-line properties of the device due to its physical area
RF switches comparison

- PIN diode switches have lower losses in comparison to FET switches
- Switching speed higher for GaAs FET (< 10 ns)
- FET switches are better for MMIC applications
- PIN diode switches work from tenths of MHz to over 100 GHz (but not at DC)
- FETs can switch from DC to mm-wave frequencies
- FETs: gate terminal decoupled from source and drain
 - No bias tee and blocking capacitors are needed to separate DC bias from RF signal
- PIN diodes: bias tees and blocking capacitors limit usable bandwidth in the UWB applications
- FETs require only a DC voltage for switching, instead of strong DC current
 - Essentially zero DC power consumption, compared to 10 mA (min) to turn on PIN diode
 - Huge advantage in phase array applications with thousands of switch devices needed to control the phase and amplitude of T/R modules

Limitations of semiconductor switches

😊

- Fast, commercially available, low cost, and ruggedness

😢

- Frequency bandwidth upper limits: degradation of insertion loss and isolation at signal frequencies above few GHz
- Breakdown of linearity: adjacent channel power violations when operating at high RF power levels in addition to noise problems
What are MEMS?

- MEMS are Micro Electro-Mechanical Systems
- MEMS typically have both electrical and mechanical components
- As microelectronics has shown, size doesn’t necessarily matter
- First MEMS Publication:
- Pressure sensors were the first MEMS products
 - Si diaphragms and diffused piezo-resistors
- Surface μ-machined accelerometers and flow sensors

Why RF MEMS?

- Miniaturization with no loss of functionality
- Integration to form a monolithic system
- Improved reproducibility, reliability and accuracy
- Exploitation of new physics domains
- Low power
- Fast actuation techniques
- Improved selectivity and sensitivity
Why RF MEMS?

<table>
<thead>
<tr>
<th>Switch type</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insertion loss</td>
</tr>
<tr>
<td>PIN / Schottky</td>
<td>≈0.15 dB</td>
</tr>
<tr>
<td>GaAs Fetes</td>
<td>1-2 dB</td>
</tr>
<tr>
<td>HBT / PIN</td>
<td>0.62 dB</td>
</tr>
<tr>
<td>Best FET</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>MEMS</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Advantages over conventional technologies (PIN diodes, JFET, MESFET....)

- High RF performance (up to mm-waves)
- Near-zero power consumption
- Volume production → low cost
- Miniaturization

Open issues

- Reliability
- Switching speed
- Power handling
Advantages of using MEMS switches over solid state switches (i.e. PIN diodes, MESFETs):
- Can be designed for any frequency (other only good up to a few GHz)
- Can be fabricated on wafer (other require soldering)
- Much less power consumption
- Excellent RF isolation

Disadvantages
- Relatively new technology (10 years old versus 50 years old)
- More complicated
- Packaging is large and expensive
- Slow switch time (microseconds instead of nanoseconds)
- Reliability (best switches reported only good for 100B cycles)
Main issues

Manufacturing

- Outgrowth of “Micromachining”
 Creation of unique physical structures through the use of sacrificial layers resulted in miniature mechanical structures on a substrate (often Silicon)
 - Open circuit / low capacitance dielectric layer
 - Closed circuit / high capacitance

- MEM switch in RF applications
 - Acts as RF switch or capacitor (100:1 ratios)
 - Loss dominated by conductor loss
 - Controlled by static DC voltage (10 nJ switching energy)
 - Low cost processing (~ 5 mask layers)
 - High cutoff frequency
 - Minimum intermodulation distortion

Basics of MEMS RF switches (1)

- MEMS: miniature device or an array of devices combining electrical and mechanical components and fabricated with surface micromachining

- Surface micromachining: deposition and lithographic patterning of various thin films, usually on Si substrates

- Interaction of elastic membranes with static electric fields causes membrane deflection \(\rightarrow\) DC voltage controlled switch
Basics of MEMS RF switches (2)

- Advantage of electromechanical relays
 - ultra-low loss high isolation and high linearity

- Advantage of solid state switches
 - significant size, power consumption, and cost advantages of high volume wafer manufacturability

- Packaging
 - freestanding mechanical structures must be protected and free of contamination during both the manufacturing process and the life time of the component
 - layout and materials in the package have a large effect on MEMS performance

- Most common being resistive series switches and capacitive shunt switches

MEMS resistive switches

Cantilever

- switch UP (OFF state)
- switch DOWN (ON state)
- contact resistance, ρ_c

Typical values:
- $h_A = 2 \, \mu m$
- $\rho_c = 10^{-8} \, \Omega cm^2$
- $R_{ON} C_{OFF} < 10^{-17} \, s$

where A is the area of the contact

Figure of merit

$$R_{ON} C_{OFF} = \frac{\varepsilon_0 \rho_c}{h_A}$$
MEMS capacitive switches

Bridge

Typical values:
- \(h_A = 2 \ \mu m \)
- \(h_D = 100 \ \text{nm} \)
- \(\varepsilon_D = 7.5 \ \varepsilon_0 \)

\[C_{\text{OFF}} = \frac{1}{\frac{1}{h_0} + \frac{h_A}{\varepsilon_0 A}} \]

where \(A \) is the area of the dielectric layer

\[C_{\text{ON}} = \frac{\varepsilon_0 A}{h_0} \]

Figure of merit:

\[\frac{C_{\text{ON}}}{C_{\text{OFF}}} = 1 + \frac{h_A \varepsilon_D}{h_D \varepsilon_0} > 100 \]

actuation
DC voltage

\(V_A = 20 \ \text{V} \)

no attraction
electric force
MEMS capacitive switches

Bridge

- Actuation DC voltage
- $V_A = 20\, \text{V}$
- Switch DOWN

RF MEMS modelling

- Z_i is a function of the switch state (ON or OFF)
- Beam or cantilever
- Pull down electrode

(Design A)

(Design B)

- Switch contact resistance (A)
- Switch contact capacitance (B)
- Pull down electrode and l-line
MEMS Modelling

RF MEMS Modelling
High lifetime (repeatability) of the switch on nano-scale level!!

Million cycles
RF MEMS

Packaging Considerations in MEMS Circuits

- Wafer level packaging will result in lowest cost for MEMS switches
- Packaging gas has a large effect on reliability
- Hermetic sealing is essential since MEMS switches are sensitive to humidity
- For high performance, low quantities, packaging can be done using standard techniques.
- The highest cost will have the package in single MEMS switches. This is not the case in phase shifters or filters, or high isolation switch networks.

MEMS and PIN switches

RF MEMS switch circuit

- DC control voltage
- 0.0025 sq inch
- one polarity
- < 1 nW

PIN diode switch circuit

- 0.25 sq inch
- two polarities: + and -
- ≈ 300 mW
Capacitive shunt SPST

- Metallic membrane shaped like a bridge the central (underpass) conductor
- Connects both ground electrodes
- DC voltage applied between the central conductor (or separate pull-down electrodes) and the membrane
 - Membrane attracted to the central conductor
- Underpass conductor covered by a thin dielectric layer
 - No sticking of the electrodes
- DOWN increased capacitance

Microwave components with MEMS switches

- RF switch – Top view
- DC actuation
- RF signal line
- Cantilever beam action (side view)
Microwave components with MEMS switches

Single-pole double-throw switch

Insertion Loss

Isolation

Frequency [GHz]

Insertion Loss [dB]

Isolation [dB]

Microwave components with MEMS switches

Raytheon

Insertion Loss @ 40 GHz: <0.07 dB
Isolation @ 40 GHz: >35 dB

Model Values

Rs 0.11 Ohms
Rsh 0.2 Ohms
Coff 0.03-0.045 pF
Cin 3.4 pF
Ron 0.25 Ohms

Capacitance Ratio 70-110
Cutoff Frequency 18,000 GHz
Switching Speed < 10 μs
Intercept Point > +66 dBm
Switching Voltage 30-50 volts
Size 280 x 170 μm
RF MEMS applications

- **Advantages of RF MEMS**
 - High performance, low bias power consumption
 - Potential low cost manufacturing into a variety of substrates

- **Limitations of RF MEMS**
 - Slower switching speed
 - Potential lifetime limitations

Applications

- Reconfigurable Apertures
 - Ground planes
 - Elements
 - Array feeds/architecture

- Phase shifters
- Filters

Conclusions

- The main question now is reliability and packaging
- Reliability is currently high
- Failure mechanisms are:
 - Resistive failure in DC-contact switches (metallurgy, contact forces)
 - Sticking due to humidity and/or charging of the dielectric (capacitive switches)
 - Sticking due to metal-to-metal contacts (contact physics)
 - Micro-welding due to large currents
- To combat failures, industry is doing the following:
 - Packaging in inert atmosphere such as nitrogen and/or hermetic sealing
 - Large voltage and large spring constant structures
 - Development of better metal contacts
 - Designs with no contact between the pull-down electrode and the bottom metal (not applicable for current capacitive switches)
Conclusions

- Today, most MEMS switches are being developed for phase shifters and defence applications.
- Tomorrow, most MEMS switches will be developed for wireless applications and low-power applications:
 - Single-Pole Multiple-Throw Switches
 - Switched filter banks for portable and base stations (receive)
 - Switched attenuators for high dynamic range receivers and instrumentation
 - Tunable filters (high-Q varactors)
 - Tunable networks for wideband applications (switched capacitors, medium Q needed)
- There are currently no high power (100 mW to 10 W) MEMS switches.
- There are currently no services or foundries for RF MEMS switches.

Part 2: Reconfigurable antenna

Contents

- Introduction
- Reconfigurable antennas
 - Radiation pattern reconfiguration
 - Frequency reconfiguration
 - Polarisation reconfiguration
- Reconfigurable reflectarrays
Introduction

Why reconfigurability?

Increasing demand of bandwidth and service quality. Antenna reconfigurability offers:

- Electronic beam steering
- Multibeam capability
- Optimized coverage
- Increased number of channels
- Robustness with respect to element failure
- Robustness with respect to interference

Main issues

- Indoor and urban environments: fading effects caused by multipath phenomena + depolarization.

- Objective: design simple (single port and compact) antennas providing different channels (patterns, polarisations) to multiply the channels and fight the fading/depolarisation effects.

- More generally, improve the communication in multi-terminal applications.

- How?
 - By altering a basic antenna with parasitics and switch the parasitics to modify the radiation characteristics
 - By multiplying the feeds (one feed per pattern/polarisation) and switch to either feed.
Reconfigurable antennas

Principle of operation

- Main idea: create a continues (variable capacitor) or discrete (switch) alternation of the resonant lengths, either by modifying the current paths, the propagation constants or by loading the antenna.

- Effective influence on the resonance:
 - Solution 1: components located in a strategic position inside the antenna, i.e., a position where its parasitic influence on the electromagnetic field is remarkable.
 - Solution 2: loading the antenna by an external line and inserting a switchable component inside the line.

Basic concept

- Antenna system consist of:
 - An active element, \(A_0 \) (permanently connected to the receiver).
 - \(N \) parasitic elements, \(A_1, A_2, \ldots, A_N \) (strongly coupled to the active element).

- Parasitic elements with switchable terminating impedances.

- Different switch settings result in different far-field patterns.

A simple example with only one parasitic element:

- \(X'_1 = \) inductive reactance (reflector).
- \(X''_1 = \) capacitive reactance (director).

All metallic parts have the same geometry. By changing the character of the termination one can effectively change the role of the passive structure from the director to the reflector, and vice versa.
Reconfigurable antennas

Quasi Yagi-Uda antenna

$A_0 \quad d \quad A_1
\begin{array}{c}
\text{dipole} \\
\text{L_0} \\
\text{L_1} > \text{L_0}
\end{array}
\quad \frac{\theta}{\phi}

\begin{array}{c}
\text{H-plane radiation pattern}\n\end{array}
\quad
\begin{array}{c}
\text{equivalent to} \\
\text{reflector} \\
\text{dipole}
\end{array}
\quad
\begin{array}{c}
\text{H-plane radiation pattern}\n\end{array}
\quad
\begin{array}{c}
\text{equivalent to} \\
\text{director} \\
\text{dipole}
\end{array}

$A_0 \quad d \quad A_1
\begin{array}{c}
\text{d} \\
\text{L_1} < \text{L_0}
\end{array}
\quad \frac{\theta}{\phi}

\begin{array}{c}
\text{H-plane radiation pattern}\n\end{array}
\quad
\begin{array}{c}
\text{equivalent to} \\
\text{director} \\
\text{dipole}
\end{array}
\quad
\begin{array}{c}
\text{H-plane radiation pattern}\n\end{array}
\quad
\begin{array}{c}
\text{equivalent to} \\
\text{reflector} \\
\text{dipole}
\end{array}

$d=0.2 \lambda$
$d=0.15 \lambda$
Reconfigurable antennas

Quasi Yagi-Uda antenna

H-plane radiation pattern of a simple Yagi-antenna system consisting of an "active" radiator A_0 and a "passive" radiator A_1 which is loaded by a pure reactive (imaginary) impedance.

Loading reactance X, at the Antenna 1 terminals, is changing from negative to positive values.

Reconfigurable antennas

Competition with passive multiband antennas

- **Tunable antennas:**
 - Added complexity (bias circuit, soldering points, ...) and cost (active components...)
 - Losses in active components

- **Multiband passive antennas:**
 - Often narrow bandwidths for one or several bands \Rightarrow sensitive to fabrication tolerances or electromagnetic perturbations (human body) \Rightarrow tuning properties increase the effective bandwidth
 - Receive unwanted signals and/or added noise from the other bands when a given band/standard is selected \Rightarrow filtering circuits BUT intrinsic filtering is performed in tunable antennas

 Can hardly be small, efficient and have good radiation properties (polarisation purity, stable radiation pattern) in all bands simultaneously
Reconfigurable antennas

Source: DARPA

Reconfigurable aperture

- "passive" elements
- "active" elements

- Frequency agile periodic structures and FSS with tuning capabilities

- Connected pads forming a bow-tie metallisation pattern. Almost any shape of the active metallic part of the antenna can be readily realised

- Allows adaptive optimisation for frequency band
- Allows steering of pattern for single feed aperture
- Lets user adaptively trade bandwidth for gain

Reconfigurable Aperture

- Overall Goals

 - Tailoring a radiation pattern dynamically
 - Greater than a decade bandwidth coverage
 - Geometric reconfiguration

- Adapt to frequency spectrum changes

 Reconfiguration for optimized performance
Frequency reconfiguration

- Resonant antenna which impedance features can be modified by tuning the electrical properties of a component integrated inside the antenna volume
- Continuous (varactor, ferrite, biased silicon substrate…) or discrete (MEMS, PIN diodes, FET,…) tuning or changing of the resonant frequency
- Frequency tuning must be obtained with a good return loss and efficiency performances over the tuning range

Multi-frequency applications:
- Two or more types of standards (GSM + DCS1800, WiFi + Bluetooth)
- Different frequencies for transmission and reception

Fine resonance adjustment when de-tuning occurs
- De-tuning results from the hand or body influence (RFID tags, mobile phones, …)
- Associated with some feedback to realise self-reacting antennas
Switchable CPW-fed slot antenna

The radiating slot of 500 μm is selected so that a beam-lead diode (total length 800 μm) can easily be soldered.

The impedance of a radiating slot at its series resistance frequency weakly depends on its length/width ratio.

Self-adjusting microstrip antenna

- Microstrip antenna loaded by two varactor diodes
- Well matched at the nominal operating frequency 5.0 GHz (no environment perturbation) for a correct reverse DC voltage applied to the varactors
- Perturbation effect:
 - Detuning of resonance ↦ shift of the resonant frequency
 - Self-adjusting of the resonant frequency: comparison of the incoming signal with the reflected signal due to a perturbation + automatic feedback

Reconfigurable PIFA

Penta-band antenna
GSM900, GPS1575, GSM1800, PCS1900, MTS2100

V_1, V_2, and V_3 are actuating voltages

MEMS-controlled mini-patches are put in the strategic points inside the radiating structure to optimize multi-band operation

Source: B. Yıldırım, B. Çetiner, Q. Xu: Reconfigurable Planar Inverted-F Antenna for Mobile Phones, 2007 AP-S Symposium, Hawaii

Reconfigurable PIFA

Penta-band antenna
GSM900, GPS1575, GSM1800, PCS1900, MTS2100

Source: B. Yıldırım, B. Çetiner, Q. Xu: Reconfigurable Planar Inverted-F Antenna for Mobile Phones, 2007 AP-S Symposium, Hawaii
Reconfigurable PIFA

Results

Electronically steerable parasitic unipole array

Radiation pattern reconfiguration

Switch Status	Active Bands
ABC | GSM 900, GPS 1575, GSM 1800
ABC | GSM 900, GPS 1575, PCS 1900
ABC | GSM 900, GPS 1575, UMTS 2100

Electronically controlled multi-beam antenna with switched parasitic elements

Return loss

Electronically controlled multi-beam antenna with switched parasitic elements

Radiation pattern

- **Elevation-plane pattern**
- **Azimuth-plane pattern**

Source: Jia-Cheng Ke, Ching-Wei Ling and Shyh-Jong Chung: *Implementation of a Multi-Beam Switched Parasitic Antenna for Wireless Applications*, 2007 AP-S Symposium, Hawaii

Reconfigurable polarisation

Antenna topology

- *Microstrip patch (back side)*
- *Ground plane*
- *CPW feed line*
- *Coupling aperture*
- *Possible switch locations*

Reconfigurable polarisation

Switch status

S1 and S2 are ON, S3 and S4 are OFF
S1 and S2 are OFF, S3 and S4 are ON

Reconfigurable reflectarrays

Reconfigurable Patch-Slot Reflectarray Elements

Reconfigurable reflectarrays

Concept

Reconfigurable reflectarrays

Results

Reconfigurable reflectarrays

Conclusions

- Reconfigurable antennas respond to the increasing demand for bandwidth and service quality.

- Advanced synthesis methods allow for sophisticated functional capabilities: beam steering, beam shaping, null placing.

- MEMS technology allows for practical implementation of such capabilities through various tunable devices (Phase shifters, power combiners, directional couplers...).

- MEMS-reconfigurable reflectarrays are a promising candidate for such applications.

- Convergence of various competences: microelectronics, materials, electromagnetics, microwave circuits, signal processing.