Association of increased eomesodermin, BCL6, and granzyme B expression with major clinical manifestations of Hashimoto’s thyroiditis – an observational study

Mario Štefanić, Stana Tokić, Mirjana Suver Stević & Ljubica Glavaš-Obrovac

To cite this article: Mario Štefanić, Stana Tokić, Mirjana Suver Stević & Ljubica Glavaš-Obrovac (2018): Association of increased eomesodermin, BCL6, and granzyme B expression with major clinical manifestations of Hashimoto’s thyroiditis – an observational study, Immunological Investigations, DOI: 10.1080/08820139.2018.1423571

To link to this article: https://doi.org/10.1080/08820139.2018.1423571

Published online: 10 Jan 2018.
Association of increased eomesoderm, BCL6, and granzyme B expression with major clinical manifestations of Hashimoto's thyroiditis – an observational study

Mario Štefančić a,⁎, Stana Tokić a,b,⁎, Mirjana Suver Stević c, and Ljubica Glavaš-Obrovac a

aDepartment of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, Osijek, Croatia; bDepartment of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia; cDepartment of Nuclear Medicine and Radiation Protection, Osijek University Hospital, Osijek, Croatia; dDepartment of Laboratory Diagnostics and Clinical Transfusion Medicine, Clinical Institute of Transfusion Medicine, Osijek University Hospital, Osijek, Croatia

ABSTRACT

Purpose: Studies of cytotoxic T cells and their respective lineage master regulators have been limited in Hashimoto's thyroiditis (HT). It is unclear whether transcriptomes are changed in HT patients and how these changes are associated with the thyroid damage, major clinical manifestations, and disease progression.

Methods: We explored the gene expression patterns of selected transcription factors [eomesoderm (EOMES), BACH2, BCL6, TCF1] and cytolytic molecules [granzyme B (GZMB)] in peripheral blood (PB) T cells of 10 healthy controls and 30 HT patients of various subtypes (hypothyroid, untreated HT; L-thyroxine (T4)-treated HT, and spontaneously euthyroid HT) using real-time quantitative PCR.

Results: EOMES (Mann–Whitney P = 0.044), GZMB (P = 0.028), and BCL6 mRNA (P = 0.001) were overrepresented in PB T cells from HT and showed levels varying by age, thyroid volume and disease severity. BCL6 transcripts were predominantly enriched in severely affected, hypothyroid cases, both on and off LT4. Increased EOMES RNA expression was associated with advancing age, lower thyroid volumes and higher peak adjusted TSH levels over the course of the disease. The body mass-adjusted, steady-state maintenance dose of LT4 increased with GZMB and BCL6 levels in PB T cells of hypothyroid cases, mostly postmenopausal women having long-standing, nongoitrous and atrophic disease form.

Conclusions: Our exploratory results suggest a role for GZMB, EOMES, and BCL6 in the context of HT, thyroid injury, and aggressive/advanced disease forms. Functions enriched within differentially expressed transcripts could be an important new target in understanding the pathogenesis of HT.

Introduction

Hashimoto’s thyroiditis (HT) is a common, multifactorial autoimmune disorder characterized by the presence of thyroid-specific autoantibodies, chronic lymphoplasmacytic infiltration and marked fibrosis that gradually replaces thyroid parenchyma, thereby
inducing hypothyroidism. B cells, CD4$^+$ T helper (Th)1, Th2, Th17 and regulatory FoxP3$^+$T (Treg) cells play prominent roles (Ajjan and Weetman, 2015); however, few details are available concerning the importance of cytolytic T cells (CTL) in the progression of HT.

Direct T cell cytotoxicity against thyroid epithelial cells (TEC) has been recognized long ago (Del Prete et al., 1986; Iwatani et al., 1993; Sugihara et al., 1995). Activated CD8$^+$ (Del Prete et al., 1986; Sugihara et al., 1995), and to a lesser degree, perforin (PRF)1$^+$ CD4$^+$ cytolytic T effectors (Wu et al., 1994) make up a considerable proportion of thyroid infiltrating T cells in HT (Iwatani et al., 1993). These thyroid infiltrating CTL are clonally expanded, self-reactive, and recognize TEC through major histocompatibility complex class I molecules on their surface (Sugihara et al., 1995), providing a telltale sign of chronic, antigen-driven proliferation. Further evidence is provided by the restricted diversity of CD8$^+$ TCRβ CDR3 spectratypes in blood, particularly in HT patients having disease longer than 5 years and requiring thyroid hormone replacement therapy (Okajima et al., 2009).

Several transcription factors have been implicated in programming the CTL functions (Crotty et al., 2010; Hu and Chen, 2013). Of these, major regulators include a T-box transcription factor (TF) eomesodermin (EOMES), B cell CLL/lymphoma 6 (BCL6), and transcription factor 1 (TCF1, encoded by TCF7), which coordinate effector to memory differentiation of T cells (Crotty et al., 2010; Hu and Chen, 2013; Pearce et al., 2003). By contrast, BTB and CNC homology 2 (BACH2) is a key negative regulator of terminal effector differentiation in conventional T cell lineages (Hu and Chen, 2013). Genetic ablation of BACH2 results in the reduction of CD8$^+$ central memory and CD4$^+$FoxP3$^+$Treg cells, with a concomitant increase in short-lived effector cells and CD4$^+$Th cells, respectively (Roychoudhuri et al., 2016, 2013). EOMES expression is also central to the cytotoxic transdifferentiation of CD4$^+$Th cells and renders CD4$^+$ and CD8$^+$T cells pathogenic by activating granzyme B (GZMB), PRF, and FasL pathways (Eshima et al., 2012). GZMB, an effector serine protease that activates target cell apoptosis through caspase-dependent and independent pathways, is regularly expressed by activated CTL and belongs to cytotoxicity-associated transcripts often used as indicators of CTL presence in tissues (Pearce et al., 2003).

Transcripts expressed in CTL may have mechanistic, diagnostic, and therapeutic importance in HT; however, little is known about their expression and influence on HT course in humans. Identification of such transcripts, which set apart particular disease subgroups or predict a severe clinical outcome, is essential to improve our understanding of HT. To this end, we screened the transcriptional patterns of EOMES, BACH2, BCL6, TCF7, and GZMB in bulk peripheral blood (PB) T cells across different outcomes of HT in a population of Croatian patients.

Methods

Subjects

The collection consisted of 30 HT patients (3 male) and 10 healthy controls (HC, all female). Healthy control subjects were euthyroid, thyroid peroxidase antibodies (TPOAb)-negative individuals, with normal ultrasound findings of the thyroid gland and no
Thyroid function measurement

TSH (normal range: 0.46–4.7 mIU/l), free tri-iodothyronine (FT3) (1.9–5.7 pmol/l) and FT4 (10–22 pmol/l) were measured in morning sera, 24 h after the last ingestion of LT4, using immunoassay methods (Vitros FT3 Reagent Pack, Vitros FT4 Reagent Pack and Vitros TSH Reagent Pack, Ortho-Clinical Diagnostics, Amersham, UK) according to the manufacturer’s instructions. The overall coefficient of variation for serum TSH was <10%. The maximum baseline serum TPOAb-IgG (negative < 125 kIU/l) levels were measured by ELISA (Anti-TPO Kit, Milenia Biotec, Germany). Peak serum TSH (third generation assay, functional sensitivity 0.01 mIU/l) and the respective FT4 value were extracted from the charts of HT cases, provided TSH/FT4 had been determined since the onset of HT, by identical generation assay, in a single accredited laboratory, prior to any pharmacological intervention.

Thyroid volume measurements

The thyroid volume was sonographically determined as the sum of the volumes of the two lobes according to the ellipsoid formula (10 MHz linear array transducer, Accuson X-150, Siemens, Germany).

Peripheral blood mononuclear cells (PBMC) isolation and cell separations

PBMC were isolated from heparinized blood samples by gradient density centrifugation on LymphoPrep (Axis Shield, Oslo, Norway) according to the instructions in the manufacturer’s leaflet. As previously detailed (Tokić et al., 2016), T cells were purified from PBMC (1 x 10^7 cells per 100 µl Isolation buffer with 20% FBS) by negative immunomagnetic selection (Dynabeads Untouched Human T cells Isolation Kit, Invitrogen, Paisley, UK) using a mixture of mouse monoclonal antibodies against CD14, CD16, CD19, CD36, CD56, CDw123 and CD235. The kit depletes B cells, natural killer (NK) cells, monocytes,
platelets, dendritic cells, granulocytes and erythrocytes. Bead-bound cells were captured by placing the polypropylene tubes containing the cell suspension in the DynaMag magnet. The remaining, non-adherent, bead and antibody-free T cells were gently removed by pipetting to a new tube. Immunomagnetic selection and washing steps were repeated twice.

Total RNA extraction

Total RNA from pelleted T cells was extracted using TRI REAGENT (Sigma, USA) solution as described by (Chomczynski and Sacchi, 1987). Quality of RNA samples was verified by ethidium bromide staining in 2% agarose gel electrophoresis and OD$_{260}$/OD$_{280}$ ratio > 1.8 measurements by NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, USA).

cDNA synthesis

First-strand cDNA synthesis was performed using PrimeScript™ RT reagent Kit (Takara Bio Inc., Japan) according to the manufacturer's instructions. Both random hexamer (5.0 μM) and oligo d(T) (2.5 μM) priming were used for efficient transcription of 400 ng total RNA in a 40 μl final master mix comprising 8 μl of 5x PrimeScript Buffer and 2 μl of PrimeScript™ RT Enzyme Mix 1. The reaction mixture was first incubated at 37°C for 15 min, then heated to 80°C for enzyme inactivation and after 5s finally cooled down to 4°C. All cDNA samples were diluted 8-fold to 1.25 ng/μl end-point concentrations and stored in aliquots at −20°C until use.

Quantitative real-time PCR

cDNA was used as a template for quantitative real-time PCR (RT-qPCR) analysis of five target (EOMES, BACH2, BCL6, GZMB, TCF7-long isoform) and one reference gene (TBP) using 96-well format plates and a LightCycler 480 II PCR instrument (Roche). All qRT-PCR measurements of transcript levels were performed in triplicate 10 μl reactions containing 4.5 μl of cDNA, 5.0 μl of TaqMan Universal PCR Master Mix II kit and 0.5 μl of pre-developed individual TaqMan gene expression assay (Applied Biosystems). The cycling conditions were set according to the manufacturer's guidelines and the list of assays and amplicon sizes is given in Table 1.

<table>
<thead>
<tr>
<th>Assay ID</th>
<th>Gene abbreviation</th>
<th>Gene name</th>
<th>GenBank Accession Number</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hs00172872_m1</td>
<td>EOMES</td>
<td>Eomesodermin</td>
<td>NM_001278183.1</td>
<td>81</td>
</tr>
<tr>
<td>Hs00175251_m1</td>
<td>TCF7</td>
<td>Transcription Factor 7</td>
<td>NM_003202.3</td>
<td>105</td>
</tr>
<tr>
<td>Hs00222364_m1</td>
<td>BACH2</td>
<td>BATF and CNC homology 2, basic leucine zipper</td>
<td>NM_021813.2</td>
<td>106</td>
</tr>
<tr>
<td>Hs01534355_m1</td>
<td>GZMB</td>
<td>Granzyme B</td>
<td>NM_004131.4</td>
<td>134</td>
</tr>
<tr>
<td>Hs00153368_m1</td>
<td>BCL6</td>
<td>B-Cell CLL/Lymphoma 6</td>
<td>NM_001706.4</td>
<td>76</td>
</tr>
<tr>
<td>Hs99999901_m1</td>
<td>TBP</td>
<td>TATA box binding protein</td>
<td>NM_003194.4</td>
<td>127</td>
</tr>
</tbody>
</table>
To evaluate the linear range of amplification and the variation in PCR efficiency for all TaqMan assays, 5-point fourfold serial dilutions of the arbitrary standards were included in each experiment. Subsequently, the amplification efficiency and the linear regression coefficient (R^2) determined for all studied genes varied between 94–100% and 0.995–0.999, respectively. Intra-assay variability was less than 0.64% for all investigated transcripts and less than 0.71% between different PCR experiments.

At the end of each run, fluorescence signals in the FAM channel were automatically normalized to ROX intensity, and Cp values were determined by the 2nd derivative maximum method using Advanced Relative Quantification module of the LightCycler® 480 Software. Expression levels of investigated transcripts were normalized relative to previously validated TBP endogenous control (Tokić et al., 2016) and fold difference in mRNA levels in unknown samples versus controls was calculated using ΔΔCt relative quantification method as described by (Livak and Schmittgen, 2001).

Statistical analysis

Normality of distributions was tested by Anderson-Darling test. Continuous data are presented as medians with interquartile ranges. If not otherwise stated, Fisher exact, Mann–Whitney and Kruskall–Wallis test with Bonferroni–Dunn’s post-hoc analysis were used for group comparisons. Pairwise and first-order partial correlations were determined by Spearman rank-test. Two-tailed $P < 0.05$ was considered significant. All statistical analyses were performed with NCSS2007 (v07.1.20, NCSS LLC, Kaysville, Utah, USA).

Results

Demographic and biochemical data

Patients’ characteristics are detailed in Table 2. Sex composition (Fisher–Freeman–Halton exact $P = 0.162$) and body mass (Kruskall–Wallis $P = 0.92$, data not shown) were similar in all groups. SubstHT cases were older than healthy controls, had longer follow-up than other HT groups and required higher serum FT4 levels to achieve FT3 and TSH levels comparable to healthy T cell donors. The replacement dose of LT4 per unit body mass was a principal determinant of serum FT4 in those patients (Spearman’s correlation coefficient $P = 0.782$, $P = 0.0075$, $n = 10$). By contrast, a lower median level of FT3, but still within the reference range, was characteristic of euHT and hypothyroid when compared to healthy individuals. Four euHT cases had a history of transient, mild subclinical hypothyroidism (peak TSH 5.4–8.75 mIU/l, normal FT4). The patients with the smallest thyroid volumes (lower tertile, ≤12.6 ml, $n = 9$) showed higher peak TSH levels at diagnosis or at follow-up [11.87 (5.85–49.4) vs 5.34 (3.62–13.16) mIU/l, ≤12.6 vs >12.6 ml, $n = 28$, Mann–Whitney $P = 0.039$].
<table>
<thead>
<tr>
<th>Group</th>
<th>Age (years)</th>
<th>Follow-up time (months)</th>
<th>FT4 (pmol/l)</th>
<th>FT3 (pmol/l)</th>
<th>TSH (mIU/l)</th>
<th>Thyroid volume (ml)</th>
<th>TPOAb (IU/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>euHT</td>
<td>54 (38–59)</td>
<td>12 (6–36)</td>
<td>11.4 (11.2–11.9)</td>
<td>2.58 (2.33–3)</td>
<td>3.78 (1.38–4.33)</td>
<td>15 (12.9–23.6)</td>
<td>714 (145–3000)</td>
</tr>
<tr>
<td>substHT</td>
<td>63 (61–64)b</td>
<td>66 (19–102)</td>
<td>15.4 (12.2–18.8)</td>
<td>3 (2.66–3.54)</td>
<td>2.54 (1.11–2.93)</td>
<td>11.1 (6.8–13.4)</td>
<td>834 (208–1318)</td>
</tr>
<tr>
<td>hypoHT</td>
<td>48 (36–83)</td>
<td>6 (6–30)</td>
<td>11.3 (9.4–11.9)</td>
<td>2.55 (2.3–3.14)</td>
<td>11.1 (6.47–17.2)</td>
<td>16.5 (14.5–21.4)</td>
<td>324 (116–1649)</td>
</tr>
<tr>
<td>Controls</td>
<td>42 (39–52)</td>
<td>-</td>
<td>12.4 (10.7–13.1)</td>
<td>3.21 (2.97–4.39)</td>
<td>1.5 (0.98–2.43)</td>
<td>11.8 (10.8–13)</td>
<td>neg.</td>
</tr>
</tbody>
</table>

Kruskal–Wallis P: 0.013 0.029 0.0015 0.023 0.0001 0.00074 -

FT4: free thyroxine, FT3: free tri-iodothyronine, TSH: thyroid-stimulating hormone, TPOAb: thyroid peroxidase antibodies

*Bonferroni–Dunn's post hoc test.

bP < 0.05 vs control group.

^cP < 0.05 vs euHT group, P < 0.01 vs hypoHT group.

^dP < 0.05 vs euHT, P < 0.01 vs substHT, P < 0.0001 vs control group.
Expression analysis

Deregulated expression of EOMES, BCL6, and GZMB mRNA in PB T cells from HT

RT-qPCR analysis showed increased RNA levels of several genes in PB T cells from HT patients, including GZMB (Figure 1a), EOMES (Figure 1b) and BCL6 (Mann-Whitney P = 0.001, Figure 1c), but not BACH2 (Figure 1d) or TCF7 (Figure 1e). For EOMES and GZMB, no significant differences in RNA levels were found among the patient subgroups (data not shown); by contrast, BCL6 transcripts were predominantly enriched in severely affected, hypothyroid patients, both LT4-treated and untreated (Kruskall-Wallis P = 0.0026, Figure 1c). The restoration of euthyroidism alone did not prevent PB T cell alterations in LT4-treated versus untreated HT. Age differences did not affect the results (covariate-adjusted general linear model, log2 fold change, $P_{\text{EOMES}} = 0.023$, $P_{\text{GZMB}} = 0.012$, $P_{\text{BCL6}} = 0.0044$).

Figure 1. Differential expression of GZMB (a), EOMES (b) and BCL6 (c) mRNA in peripheral blood CD56-/CD16-T cells across the studied groups of HT patients (HT) and healthy controls. Gene expression was measured by RT-qPCR relative to TBP in an independent cohort of 9 untreated (hypoHT), 10 LT4-treated hypothyroid HT patients (subHT), 11 spontaneously euthyroid HT cases (euHT) and 10 healthy controls. P values for each mRNA relative expression are presented (Mann-Whitney test (a–b, d–e); Bonferroni-Dunn’s post-hoc analysis following Kruskall-Wallis test (c)). Horizontal lines represent median with interquartile range.
Selected PB T cell transcripts are associated with clinical covariates of HT

EOMES transcript abundance increased with age (Figure 2a). Increased T cell
EOMES mRNA expression was moderately associated with decreasing residual thyr-
oid volume in the HT group (Figure 2b), particularly among the LT4-treated cases
($\rho = -0.758$, $P = 0.011$, $n = 10$). A strong inverse association between the GZMB
mRNA levels and the thyroid volume was observed in the latter (Figure 2c). Age, the
level of TSH stimulation and body mass did not affect the volumetric associations (partial correlations, data not shown).

In the HT group, the peak serum TSH was independently associated with interindividual variations in expression levels of EOMES mRNA (partial $\rho = 0.49$, $P = 0.013$, $n = 26$) after adjustment for the respective FT4 value.

A significant positive association was also noted between the GZMB, BCL6 transcript expression and the body mass-adjusted replacement dose of LT4 in similarly aged subHT patients (Figure 2d,e). The target serum TSH did not affect the results (partial correlations, data not shown). TPOAb levels were not associated with any transcript (data not shown).

Transcriptional cross-correlations

Several between-mRNA correlations were observed, all broadly consistent with the previous reports from perturbation studies (Hu and Chen, 2013; Pearce et al., 2003): GZMB transcript abundance was tightly linked to EOMES mRNA expression levels ($\rho = 0.788$, $P < 10^{-6}$). EOMES ($\rho = 0.348$, $P = 0.028$) and BCL6 levels ($\rho = 0.476$, $P = 0.0019$) were related to TCF7; in addition, BCL6 levels were also related to BACH2 transcript expression ($\rho = 0.41$, $P = 0.0087$, all $n = 40$).

Discussion

Using RT-qPCR profiling of HT participants, we detected that transcripts encoding EOMES, its canonical target GZMB, and a B/T cell TF BCL6 are I) overrepresented in PB T cells of HT patients, and II) show substantial interindividual variations in affected individuals, partly in relation to known clinical phenotypes.

Noteworthy, high EOMES mRNA expressors were characterized by higher peak adjusted TSH levels over the course of the disease and also by lower thyroid volumes, which, in turn, may contribute to the progression of thyroid insufficiency and the development of hypothyroidism in untreated HT (Carlé et al., 2009). TSH, in its own turn, can play an important role in T cells (Hodkinson et al., 2009; Wu et al., 2017) and thymus (Stefan et al., 2014; Wu et al., 2017), and regulates their functions via TSH receptor. Combined, these results suggest that the inflammatory process of HT and the subsequent thyroid immune injury, transient or permanent, could lead to or result from deregulation of EOMES-driven T cell networks. There is also evidence that EOMES expression is a heritable and longitudinally stable phenotype in PBMC (McKay et al., 2016), so it is possible that the observed result is not a disease effect, but the net effect of genetic or epigenetic upregulation, the specific phenotype of HT being one possible consequence of it. Accordingly, both EOMES and EOMES T cells have been already associated with multiple sclerosis (McKay et al., 2016; Raveney et al., 2015), rheumatoid arthritis (RA, Kim et al., 2015) and dysthyroid orbitopathy (Khong et al., 2015).

EOMES is a parologue of another differentially expressed T-box TF in HT, T-bet (Peng et al., 2015; Tokić et al., 2016). Both T-bet and EOMES have been reported to inhibit peripheral FOXP3 induction in murine CD4+ T cells (Lupar et al., 2015). The two TF also cooperate to create and arm short-lived CD8+ effector CTL (Pearce et al., 2003); henceforth, high EOMES expression promotes effector to memory cell transition (Knox et al.,
Ageing and antigen persistence increase further the percentage of EOMES−CD8+ cells in CD8+ T cells (Dolli et al., 2013; Moskowitz et al., 2017), providing an explanation for the progressive enrichment of EOMES transcripts in PB T cells from aged subjects. Aside from CD8+ T cells, EOMES is expressed in several other cytotoxic effector subsets that could mediate the damage of TEC and affect the development of HT, like CD3+CD56+/CD16+NK cells (depleted in our study samples), invariant (i)NKT, CD4+CTIL, γδ and CD3+CD4−CD8− (DN) γδ T cells (Knox et al., 2014). In support, patients with HT show variable expansion of CD8+Tc17 (Liu et al. 2016b), CD3+CD56+NKT (Guo et al., 2014) and CD28+/CD45RO+ memory T cells in both CD4+ and CD8+ compartments of circulating blood (Nanba et al., 2009; Prelog et al., 2013). Of these, CD28+ T cells display features of effector/memory cells with increased replicative history and an intense, GZMB/PRF cytotoxic profile, a pattern that increases further during aging (Maly and Schirmer, 2015). High expression of EOMES, T-bet, and FasL is another feature that separates CD28+ from CD28−CD8+ T cells (Fann et al., 2005).

A numerically sparse set of γδ and DN γδ T cells has been also described within the Hashimoto’s thyroids (Iwatani et al., 1993; Liu et al. 2016a; Paolieri et al., 1995); however, the scarcity of peripheral EOMES+γδ and iNKT cells (Knox et al., 2014) somewhat limits their competitiveness under current experimental conditions favoring the bulk of CD56+/CD16+ T cells. Thus, a more precise analysis of T cell subpopulations would offer a better definition of EOMES activity in PB and affected thyroids. Also, the inclusion of more aged control subjects may be needed to see whether the observed overexpression of EOMES transcripts is related to immunosenescence of T cells in HT.

Within the T cell compartment, TCF1 and BCL6 support the formation of self-renewing (Crotty et al., 2010; Pearce et al., 2003), stem-like CD8+ memory precursor cells (Wu et al., 2016). TCF1–BCL6 axis also directs the acquisition of a T follicular helper (Tfh) cell phenotype in both CD4+ precursors (Pratama and Vinuesa, 2014) and exhausted CD4+ CD8− effector (Tex) (Crawford et al., 2014; Wu et al., 2016). In mice, a role for BCL6 in controlling Th2, Th17 and Treg cells has been also reported (Crotty et al., 2010). The tight regulation of BCL6 expression is thus essential, as an aberrant acquisition of Tex or Tfh phenotype affects tissue damage, severe organ injury, and end-organ injury in several autoimmune disorders (McKinney et al., 2015; Pratama and Vinuesa, 2014). In this context, it is relevant that both thyroid-resident, generative center (GC) CD4+ Tfh and PB CD4+CXCR5+PD1+ Tfh-like cells (Liu et al., 2016b; Zhu et al., 2012) are expanded in HT; of these, only GC Tfh cells, but not their circulating counterparts, express BCL6 (Pratama and Vinuesa, 2014). Herein, we found a stepwise increase of BCL6, but not TCF7 expression from HC to euHT and severe HT in vivo, with the highest levels in PB T cells from hypothyroid HT, both on and off LT4. In LT4-treated cases, mostly postmenopausal women having long-standing HT and non-goitrous/atrophic disease form, the body mass-adjusted LT4 dose necessary to maintain mid-normal TSH values escalated with BCL6 expression in PB T cells. The latter finding is at odds with two earlier HT studies (Liu et al., 2016b; Zhu et al., 2012), in which circulating cells of HT cases lacked increased amounts of BCL6 mRNA, a difference that perhaps reflects cell isolation (PBMC (Liu et al., 2016b) and CD4+ T (Zhu et al., 2012) vs CD56− T cells), selection of housekeeping genes, divergent ancestry, environmental heterogeneity, variations in disease duration, statistical power, differentiation states of T cells and the severity of HT. Therefore, BCL6 is an interesting, but little understood aspect of HT.
The presence of PRF/GZMB-secreting T cells has been detected in Hashimoto’s thyroids (Kie et al., 2001; Wu et al., 1994), but the functional relevance of GZMB remains unknown. A prominent intraglandular expression of GZMB is a hallmark of interferon-γ induced inflammatory thyroiditis, leading to profound hypothyroidism in genetically susceptible mice (Akeno et al. 2011). In addition to having a cytolytic effect, GZMB, which functions downstream of EOMES and T-bet, may be also important for homeostasis of CD8⁺ T cells in the periphery, homing of primed CTL (Mollah et al., 2012) and killing of Treg cells by GZMB⁺CD4⁺ effectors (Ashley and Baecher-Allan, 2009). CTLA-4, a major gatekeeper of thyroid autoimmunity, reduces the frequency of GZMB-expressing CD8⁺ T cells by selectively inhibiting the accumulation of EOMES (Hegel et al., 2009). The number of these GZMB⁺CD8⁺ T cells in PB correlates with disease activity in systemic lupus erythematosus (Blanco et al., 2005), whereas the circulating GZMB has been associated with the severity of erosions in RA (Goldbach-Mansky et al., 2005). In our study, the overall distribution of GZMB transcripts in PB T cells from HT patients showed upregulation, at least partially in an EOMES-related fashion. Moreover, a cytotoxic signature, consisting of EOMES and/or GZMB upregulation, was associated with smaller thyroid remnants and higher body mass-adjusted maintenance doses of LT4 in similarly aged, hypothyroid cases undergoing replacement therapy, respectively. The exact mechanism behind these co-occurrences is uncertain but remains interesting because it could point, among other factors, to the origins of hypothyroidism and potentially identify mechanistic and therapeutic targets in susceptible individuals.

Several issues remain to be addressed. I) In activated T cells, protein levels are often controlled by translational, rather than transcriptional mechanisms. Multiparametric labeling, longitudinal samples, and functional assays are necessary to establish the stability and cellular sources of target protein expression over disease course. II) PB T cells may not be relevant to the control of HT in situ. Another question relates to the T cell clonality and reactivity against thyroid self-antigens in expanded PB populations. III) A larger sample would improve power and effect size estimation across patient subgroups. IV) Obesity, different salt iodization ordinances, and genetic background may confound the results of thyroid volume and TSH measurements (Brčič et al., 2017; Taylor et al., 2015).

In closing, our exploratory study suggests that EOMES, BCL6 and GZMB gene expression are aberrant within the PB T cell transcriptome of HT patients. The association of this transcription signature with the heterogeneity of HT and disease control is suggested. Further work is necessary to confirm and expand the functions of identified targets across the spectrum of HT.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This work was supported by the Croatian Ministry of Science, Education and Sports (Grant No. 219-2190372-2068) and Josip Juraj Strossmayer University of Osijek (VIF2016MEFOS-37).
References

Sugihara S, Fujiwara H, Niimi H, Shearer GM. 1995. Self-thyroid epithelial cell (TEC)-reactive CD8+ T cell lines/clones derived from autoimmune thyroiditis lesions. They recognize self-thyroid antigens directly on TEC to exhibit T helper cell 1-type lymphokine production and cytotoxicity against TEC. J Immunol, 155, 1619-1628.

