CONFERENCE BOOK
TABLE OF CONTENTS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>1</td>
</tr>
<tr>
<td>WELCOME</td>
<td>3</td>
</tr>
<tr>
<td>COMMITTEES</td>
<td>4</td>
</tr>
<tr>
<td>KEYNOTE SPEAKERS</td>
<td>9</td>
</tr>
<tr>
<td>Chongqing Kang</td>
<td>9</td>
</tr>
<tr>
<td>Carlo Alberto Nucci</td>
<td>10</td>
</tr>
<tr>
<td>Yury Dvorkin</td>
<td>11</td>
</tr>
<tr>
<td>Yongqian Liu</td>
<td>12</td>
</tr>
<tr>
<td>PROGRAM OVERVIEW</td>
<td>13</td>
</tr>
<tr>
<td>Monday 12-Nov-2018</td>
<td>14</td>
</tr>
<tr>
<td>Tuesday 13-Nov-2018</td>
<td>15</td>
</tr>
<tr>
<td>Wednesday 14-Nov-2018</td>
<td>16</td>
</tr>
<tr>
<td>Thursday 15-Nov-2018</td>
<td>17</td>
</tr>
<tr>
<td>SESSION CHAIRS</td>
<td>18</td>
</tr>
<tr>
<td>SESSIONS</td>
<td>22</td>
</tr>
<tr>
<td>SES-01: Monday 01 - Power System Dynamics</td>
<td>22</td>
</tr>
<tr>
<td>SES-02: Monday 02 - Power Flows</td>
<td>23</td>
</tr>
<tr>
<td>SES-03: Monday 03 - Voltage Stability</td>
<td>24</td>
</tr>
<tr>
<td>SES-04: Monday 04 - Wind Power Generators</td>
<td>25</td>
</tr>
<tr>
<td>SES-05: Monday 05 - Power Electronics</td>
<td>26</td>
</tr>
<tr>
<td>SES-06: Monday 06 - Energy Storage</td>
<td>27</td>
</tr>
<tr>
<td>SES-07: Monday 07 - Power Markets</td>
<td>28</td>
</tr>
<tr>
<td>SES-08: Monday 08 - Transmission Lines</td>
<td>29</td>
</tr>
<tr>
<td>SES-09: Monday 09 - Reactive Power</td>
<td>30</td>
</tr>
<tr>
<td>SES-10: Monday 10 - Integrated Aspects ICT and Energy Systems</td>
<td>31</td>
</tr>
<tr>
<td>SES-11: Tuesday 01 - Microgrid Modelling</td>
<td>32</td>
</tr>
<tr>
<td>SES-12: Tuesday 02 - Distributed Resources</td>
<td>33</td>
</tr>
<tr>
<td>SES-13: Tuesday 03 - Integrated Energy Systems</td>
<td>34</td>
</tr>
<tr>
<td>SES-14: Tuesday 04 - Flexibility</td>
<td>35</td>
</tr>
<tr>
<td>SES-15: Tuesday 05 - Power Electronics</td>
<td>36</td>
</tr>
<tr>
<td>SES-16: Wednesday 01 - Power System Dynamics</td>
<td>37</td>
</tr>
<tr>
<td>SES-17: Wednesday 02 - Concepts and ICT Solutions</td>
<td>38</td>
</tr>
<tr>
<td>SES-18: Wednesday 03 - ICT-driven Intelligent Solutions and Smart Metering</td>
<td>39</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>SES-19</td>
<td>WEDNESDAY 04 – POWER SYSTEM PROTECTION</td>
</tr>
<tr>
<td>SES-20</td>
<td>WEDNESDAY 05 – DATA-DRIVEN MODELLING I</td>
</tr>
<tr>
<td>SES-21</td>
<td>THURSDAY 01 – POWER SYSTEM EQUIPMENT</td>
</tr>
<tr>
<td>SES-22</td>
<td>THURSDAY 02 – FORECASTING</td>
</tr>
<tr>
<td>SES-23</td>
<td>THURSDAY 03 – DATA DRIVEN MODELLING II</td>
</tr>
<tr>
<td>SES-24</td>
<td>THURSDAY 04 – OPERATIONAL ASPECTS OF POWER SYSTEM</td>
</tr>
<tr>
<td>SES-25</td>
<td>THURSDAY 05 – POWER SYSTEM MODELLING AND ANALYSES</td>
</tr>
<tr>
<td>SPECIAL SESSIONS</td>
<td></td>
</tr>
<tr>
<td>SS-01</td>
<td>CROSSBOW – CROSS BORDER MANAGEMENT OF VARIABLE RENEWABLE ENERGIES AND STORAGE UNITS ENABLING A TRANSNATIONAL WHOLESALE MARKET</td>
</tr>
<tr>
<td>SS-02</td>
<td>BLOCKCHAINS IN THE ENERGY SECTOR</td>
</tr>
<tr>
<td>SS-03</td>
<td>FLEXCOOP: DEMOCRATIZING THE ENERGY MARKET THROUGH INTRODUCTION OF INNOVATIVE DEMAND RESPONSE TOOLS AND NOVEL BUSINESS MODELS</td>
</tr>
<tr>
<td>SS-04</td>
<td>SIREN – SMART INTEGRATION OF RENEWABLES</td>
</tr>
<tr>
<td>SS-05</td>
<td>INTEGRATED SMART GRID CROSS-FUNCTIONAL SOLUTIONS FOR OPTIMIZED SYNERGETIC ENERGY DISTRIBUTION, UTILIZATION STORAGE TECHNOLOGIES</td>
</tr>
<tr>
<td>SS-06</td>
<td>FENISG – FLEXIBLE ENERGY NODES IN LOW CARBON SMART GRID; WINDLIPS – WIND ENERGY INTEGRATION IN LOW INERTIA POWER SYSTEM</td>
</tr>
<tr>
<td>SS-07</td>
<td>STORY – THE ADDED VALUE OF STORAGE IN DISTRIBUTION SYSTEMS</td>
</tr>
<tr>
<td>SS-08</td>
<td>DER – DISTRIBUTED ENERGY SOURCES CONTROL AND THE USE OF FLEXIBILITY IN FUTURE SYSTEM</td>
</tr>
<tr>
<td>SS-09</td>
<td>THE GLOBAL GRID</td>
</tr>
<tr>
<td>SS-10</td>
<td>ROUND TABLE SESSION - THE FUTURE OF ENERGY IN CROATIA</td>
</tr>
<tr>
<td>POSTER SESSION</td>
<td></td>
</tr>
<tr>
<td>SPECIAL ISSUE JOURNAL</td>
<td></td>
</tr>
<tr>
<td>VENUE INFORMATION</td>
<td></td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td></td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td></td>
</tr>
<tr>
<td>NOTES</td>
<td></td>
</tr>
</tbody>
</table>
It is our great pleasure to welcome you to 11th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion – MEDPOWER 2018. MEDPOWER 2018 Conference is dedicated to experts carrying out research in the fields of energy and power systems and has a longstanding tradition through which it has become the platform for presenting research results, introduction of innovative technologies, exchanging ideas, networking and more.

The first MEDPOWER conference was held in Lefkosia, Cyprus in 1998 and the last one was held in Belgrade, Serbia in 2016. This time, 11th time, in Dubrovnik (Cavtat), Croatia, the organization is the joint effort of University of Zagreb, Faculty of Electrical Engineering and Computing, IET Hellas Network, IET Israel Network and IET Cyprus Network with the support of Power and Energy Chapter (PES) of the IEEE Croatia Section.

The conference program is divided into 3 tracks:

1. Operational aspects of power system, focusing on modelling and analyses,
2. Energy system challenges in the presence of growing uncertainty and unbundling
3. Integrated aspects of information and communication technologies (ICT) and energy systems

On top of the regular sessions, MEDPOWER 2018 Conference offers 4 distinguished keynote lecturers, 1 round table session sessions, and a total of 9 special sessions. Overall, the conference will host 161 papers, each of which was reviewed by at least two reviewers. The Energies best paper award is given to the best papar.

This year’s MEDPOWER is hosted in Dubrovnik - one of the most beautiful and best preserved old cities in the world. The Old town, with its city walls and fortresses, numerous old churches, monuments and other historical objects, testifies to its glorious and rich history. As one of Europe’s most popular and most beautiful living monuments, Dubrovnik became a UNESCO World Heritage Site in 1979 and was recently a filming location (King’s Landing) of a popular Game of Thrones series.

For these 4 conference days, you will have a chance to meet, catch up and start collaborations with the experts from all over the world. Please, seize this opportunity as the conference technical and social program is designed for everyone to interact, network and share ideas to provide everyone a better future of energy.

We are looking forward to being your hosts,

Your MEDPOWER 2018 Organizing Team
General Chairs

Igor Kuzle, University of Zagreb Faculty of Electrical Engineering and Computing

Tomislav Capuder, University of Zagreb Faculty of Electrical Engineering and Computing

Organizing Committee Chair

Ninoslav Holjevac, University of Zagreb Faculty of Electrical Engineering and Computing

Technical Programme Chair

Hrvoje Pandžić, University of Zagreb Faculty of Electrical Engineering and Computing

Conference secretary

Mirna Gržanić, University of Zagreb Faculty of Electrical Engineering and Computing

Publications chair

Ivan Pavić, University of Zagreb Faculty of Electrical Engineering and Computing
COMMITTEES

Honorary Co-Chairmen

Nikola Rajković, University of Belgrade, Serbia
Apostolos Kokkosis, Piraeus University of Applied Sciences, Greece
Nikolaos Hatzigiøriou, National Technical University of Athens, Greece
Haris Karavas, Electricity Authority of Cyprus, Cyprus
Evangelos Dialynas, National Technical University of Athens, Greece
Fabrizio Pilo, University of Cagliari, Italy
Arie Braunstein, Tel Aviv University, Isreal
Alexis Polycarpou, Frederik University, Cyprus

Local Organizing Committee

Hrvoje Bašić, University of Zagreb Faculty of Electrical Engineering and Computing
Mateo Beus, University of Zagreb Faculty of Electrical Engineering and Computing
Bojan Franc, University of Zagreb Faculty of Electrical Engineering and Computing
Juraj Havelka, University of Zagreb Faculty of Electrical Engineering and Computing
Matej Krpan, University of Zagreb Faculty of Electrical Engineering and Computing
Zora Luburić, University of Zagreb Faculty of Electrical Engineering and Computing
Matija Zidar, University of Zagreb Faculty of Electrical Engineering and Computing
Paula Mamić, University of Zagreb Faculty of Electrical Engineering and Computing
Tomislav Baškarad, University of Zagreb Faculty of Electrical Engineering and Computing
COMMITTEES

International Scientific Program Committee

Tomislav Barić, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Croatia
Jef Beerten, KU Leuven, Belgium
Florin Capitanescu, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Miguel Carrion, University of Castilla-La Mancha, Spain
João P. S. Catalão, FEUP – Faculty of Engineering of the University of Porto, Portugal
Spyros Chatzivasileiadis, DTU, Denmark
Gianfranco Chicco, Politecnico di Torino, Italy
Fabio D’Andreaiovanni, French National Center for Scientific Research (CNRS), Sorbonne University, France
Neven Duić, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia
Yury Dvorkin, New York University, USA
Olav B Fosso, Norwegian University of Science and Technology (NTNU), Norway
Juraj Havelka, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
Pierre Henneaux, Tractebel & Université libre de Bruxelles, Belgium
Dirk Van Hertem, KU Leuven, Belgium
David Infield, University of Strathclyde, Scotland
Chongqing Kang, Tsinghua University, China
Pierluigi Mancarella, University of Melbourne, Australia
Jovica Milanović, University of Manchester, UK
Juan Miguel Morales, University of Malaga, Spain
Carlo Alberto Nucci, University of Bologna, Italy
Luis Nando Ochoa, University of Melbourne, Australia
COMMITTEES

Mathaios Panteli, University of Manchester, UK
Salvador Pineda, University of Malaga, Spain
Filipe Soares, Institute for Systems and Computer Engineering of Porto (INESC Porto), Portugal
Stjepan Sučić, KONČAR KET Inc., Croatia
Damir Šljivac, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Croatia
Vladimir Terzija, University of Manchester, UK
Danijel Topić, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Croatia
Gregor Verbič, The University of Sydney, Australia
Zhongdong Wang, The University of Manchester, UK
Ning Zhang, Tsinghua University, China

Steering Committee

Marios Agrotis, Technical Manager for G4S, Cyprus
Nikola Rajaković, University of Belgrade, Serbia
Apostolos Kokkosis, Piraeus University of Applied Sciences, Greece
Nikolaos Hatzigiaryiou, National Technical University of Athens, Greece
Haris Karavas, Electricity Authority of Cyprus, Cyprus
Evangelos Dialinas, National Technical University of Athens, Greece
Arie Braunstein, Tel Aviv University, Israel
Fabrizio Pilo, University of Cagliari, Italy
Gady Golan, Holon Institute of Technology
Alexis Polycarpou, Frederick University, Cyprus
COMMITTEES

International Advisory Committee

G. Andersson, Sweden
A. Bakirtzis, Greece
M. Barbosa, Portugal
Y. Beck, Israel
M. Bollen, Sweden
V. Borozan, FYROM
N. Boulaxis, Greece
R. Bualoti, Albania
N. Jenkins, UK
I. Kaldelis, Greece
S. Kaminaris, Greece
G. Kariniotakis, France
M. Gordan, Romania
A. Gubina, Slovenia
D. Sljivac, Croatia
V. Katic, Serbia
A. Kladas, Greece
T. Konjic, BIH
G. Korres, Greece
P. Kundur, Canada
E. Kyriakides, Cyprus
M. Matos, Portugal
J. M. Velasco, Spain
S. Massucco, Italy
P. Georgilakis, Greece
I. Gonos, Greece
M. Eremia, Romania
O. Fosso, Norway
G. Georgiou, Cyprus
T. Gomez, Spain
T. Saraiva, Portugal
D. Skrlec, Croatia
D. Sobajic, USA
I. Stathopoulos, Greece
S. Meliopoulos, USA
J. Milanovic, UK
V. Miranda, Portugal
C. A. Nucci, Italy
A. Paliatsos, Greece
G. Papagiannis, Greece
J. A. P. Lopes, Portugal
A. Poullikkas, Cyprus
K. Psomopoulos, Greece
S. Rahman, USA
N. Rajakovic, Serbia
S. Stavrinos, Cyprus
A. Stavrou, Cyprus
G. Strbac, UK
F. Topalis, Greece
S. Tsitomeneas, Greece
L. Tsoukalas, USA
T. Van Cutsem, Belgium
G. Vokas, Greece
N. Voropai, Russia
C. Vournas, Greece
N. Vovos, Greece
J. Zielinski, Poland
A. Papalexopoulos, USA
E. Agic, BIH
N. Duic, Croatia
Biography

Chongqing Kang is full professor of electrical engineering in Tsinghua University. He is Chairman of Executive Committee of Department of Electrical Engineering. From 2011 to 2014 he was the Director of Centre for Teaching Excellence, Tsinghua Univ. His research interest is focused on power system planning, operation, renewable energy, low carbon technologies and load forecasting. He is Fellow of IEEE and IET, senior member of CSEE. He has been on the editorial board of 5 international journals including IEEE Transactions on Power Systems and Electric Power Systems Research. He is the Editor-in-Chief of International Transactions on Electrical Energy Systems (Wiley). He has published 3 monographs in Chinese and one book in English. He published over 300 academic papers, including over 60 IEEE Transactions papers. He has been a member of IEEE PES Long Range Planning Committee.

Integrating High Share of Variable Renewable Energy in Bulk Power Systems

Abstract: Countries around the world set aggressive goal for the very high share of renewables in future power systems. However, uncertainty and variability of the very high penetration renewables need more flexibility to balance the generation and load. This presentation will introduce some novel approaches to provide flexibility for power systems including concentrating solar power (CSP), cloud energy storage (CES), and multiple energy systems (MES). CSP is an emerging controllable renewable generation technique to accommodate the uncontrollable renewable energy. CES presents a new business model to share both centralized and distributed storages to explore their flexibility potential. MES exploits the synergy of electricity, gas, and heat systems to provide flexibility. In addition, data analytics on the demand side and renewable energy are proposed to have a better understanding of electricity consumption behaviors and renewable energy output stochastic characteristics and further contribute the accommodation of renewable energy. Finally, the presentation will provide some practice experiences from the provincial power systems with high penetration of renewable energy in China.
KEYNOTE SPEAKERS

Carlo Alberto Nucci

University of Bologna, Italy

Biography

Full professor and head of the Power Systems Laboratory of the Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ of the University of Bologna. Author/co-author of over 300 scientific papers, of six book chapters edited by IEEE, IET etc. IEEE and IET Fellow, CIGRE honorary member. Chairman of Cigré Study Committee C4 ‘System Technical Performance’ (2006-2012). Editor in Chief of the Electric Power Systems Research journal, Elsevier. Doctor honoris causa of the University Politehnica of Bucharest, corresponding member of the Bologna Science Academy. President of the Italian Group of University Professors of Electrical Power Systems. Member of the EU Smart City Stakeholder Platform, PES representative in the IEEE Smart City Initiatives Program.

Smart Grids as enablers for Smart Cities

Abstract: The smart grid is generally considered as the key enabler for the implementation of the concept of smart city. This invited keynote is aimed at illustrating the appropriateness of such a concept along with the necessary clarifications. The keynote will first provide a brief survey of the power systems evolution in the last decades, from the traditional structure standing on centralized generation and control to supply customers through AC transmission networks and distribution feeders with unidirectional energy flow, to the new structure in which more renewable generation is deployed – also at the distribution level by prosumers – through DC/AC converters, thus making it necessary more ICT and intelligence than with the traditional structure, inherently more stable. The expected diffusion of electrical mobility, which represents a further challenge especially for distribution networks is another factor that calls for more smartness of the grid of the future: the smart grid. An example of a three-co-simulation platform (traffic, communication network and power distribution grid) realized to study the planning and the deployment of a recharging infrastructure that offers services while meeting users requirements and preserving (or improving) at the same time the grid power quality will be presented. The keynote will eventually cover the smart city definition and requirements, in terms of key technologies and modeling tools that are expected to be applied in future smart cities and will illustrate some examples of smart grid-smart city projects in which researchers of the University of Bologna.
KEYNOTE SPEAKERS

Yury Dvorkin

New York University, USA

Biography

Yury Dvorkin (S’11-M’16) received his Ph.D. degree from the University of Washington, Seattle, WA, USA, in 2016. Dvorkin is currently an Assistant Professor in the Department of Electrical and Computer Engineering at New York University, New York, NY, USA. Dvorkin was awarded the 2016 Scientific Achievement Award by Clean Energy Institute (University of Washington) for his doctoral dissertation “Operations and Planning in Sustainable Power Systems”. His research interests include power system operations, planning, and economics.

Extinction of Electric Power Distribution: What Will It Take

Abstract: Proliferation of ubiquitous distributed energy resources and smart grid sensing, monitoring, communication and control technologies has paved the way to re-considering nearly century-long business practices within electric power distribution systems. As a result, electric power distribution is gradually evolving from a utility-centric to an agent-centric paradigm, where the role of traditional distribution utilities changes from distribution itself to pro-active management of utility-owned, private resources, and third-party aggregators in a consensus, mutually beneficial manner. This presentation will describe recent advances in business models, data analytics, and decision analysis that make it possible to fully leverage the full range of techno-economic benefits of these changes and enhance the overall efficiency of power delivery.
Yongqian Liu
North China Electric Power University, Beijing, China

Biography
Yongqian Liu got his PhD on Production Automation at Nancy 1 University in France and PhD on Hydropower Engineering and at Huazhong University of Science and Technology in China in 2002. He has 32 years of professional experience on Wind Power and Hydro Power Engineering. He is one of the founders of the Bachelor’s programme “Wind Energy and Power Engineering” in China, and his achievements include strong record of numerous academic and industrial R&D projects, technological consulting projects, and 132 research papers. Currently his main research, teaching, and consulting interests are the theory and technologies on Wind Power Plant Design, and Operation and Maintenance.

Intelligent Wind Farm Technologies

Abstract:
In this speech, the objectives, concept, and functions of an intelligent wind farm are discussed, the framework and the technologies for intelligent wind farm are introduced, current research status on intelligent wind farm technologies is reviewed, the research achievements of intelligent wind farm in China are examined and the future development of intelligent wind farm technologies is prospected.
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday 12th November</th>
<th>Tuesday 13th November</th>
<th>Wednesday 14th November</th>
<th>Thursday 15th November</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30am - 9:00am</td>
<td>Welcome and Intro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00am - 10:30am</td>
<td>Parallel session: SES01 – SES05</td>
<td>9:00am - 10:30am Parallel session: SES11 – SES15</td>
<td>9:00am - 10:30am Parallel session: SES16 – SES20</td>
<td>9:00am - 10:30am Parallel session: SES21 – SES25</td>
</tr>
<tr>
<td>10:30am - 11:00am</td>
<td>Coffee break</td>
<td>10:30am - 11:00am Coffee break</td>
<td>10:30am - 11:00am Coffee break</td>
<td>10:30am - 11:00am Coffee break</td>
</tr>
<tr>
<td>11:00am - 12:00pm</td>
<td>Keynote 01: Carlo Alberto Nucci</td>
<td>11:00am - 12:00pm Keynote 02: Chongqing Kang</td>
<td>11:00am - 12:00pm Keynote 03: Yury Dvorkin</td>
<td>11:00am - 12:00pm Keynote 04: Yongqian Liu</td>
</tr>
<tr>
<td>12:00pm - 1:00pm</td>
<td>Lunch</td>
<td>12:00pm - 1:00pm Lunch</td>
<td>12:00pm - 1:00pm Lunch</td>
<td>12:00pm - 1:00pm Lunch</td>
</tr>
<tr>
<td>1:00pm - 2:30pm</td>
<td>Special session: SS01 – SS02</td>
<td>1:00pm - 2:30pm Special session: SS03 – SS04</td>
<td>2:00pm – 4:00pm Round Table Session: The Future of Energy in Croatia</td>
<td>1:00pm - 2:30pm Special session: SS07 – SS08</td>
</tr>
<tr>
<td>2:30pm - 3:00pm</td>
<td>Coffee break</td>
<td>2:30pm - 3:00pm Coffee break</td>
<td></td>
<td>2:30pm - 3:00pm Coffee break</td>
</tr>
<tr>
<td>3:00pm - 4:30pm</td>
<td>Parallel session: SES06 – SES10</td>
<td>3:00pm - 4:30pm Special session: SES05 – SES06</td>
<td></td>
<td>3:00pm - 4:30pm Poster session Special session SES09</td>
</tr>
<tr>
<td>7:00pm - 11:00pm</td>
<td>Welcome reception</td>
<td>7:00pm - 10:00pm Gala dinner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00pm - 11:00pm</td>
<td>Welcome reception</td>
<td>7:00pm - 10:00pm Gala dinner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM

Monday, 12/Nov/2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30am - 9:00am</td>
<td>INTRO: Introduction to MEDPOWER 2018 in Dubrovnik, Croatia Location: Ragusa</td>
<td></td>
</tr>
<tr>
<td>9:00am - 10:30am</td>
<td>SES-01: Monday 01 - Power system dynamics Location: Bobara</td>
<td>SES-02: Monday 02 - Power Flows Location: Šipun</td>
</tr>
<tr>
<td>10:30am - 11:00am</td>
<td>Coffee break 01: Coffee Break 01</td>
<td></td>
</tr>
<tr>
<td>11:00am - 12:00pm</td>
<td>KEYNOTE 01: CARLO ALBERTO NUCCI Location: Ragusa</td>
<td></td>
</tr>
<tr>
<td>12:00pm - 1:00pm</td>
<td>Lunch 01: Lunch 01 Location: Hotel Restaurant Cavtat</td>
<td></td>
</tr>
<tr>
<td>1:00pm - 2:30pm</td>
<td>SS01: CROSSBOW Location: Bobara</td>
<td>SS02: BLOCKCHAINS Location: Orlando</td>
</tr>
<tr>
<td>2:30pm - 3:00pm</td>
<td>Coffee Break 02: Coffee Break 02</td>
<td></td>
</tr>
<tr>
<td>3:00pm - 4:30pm</td>
<td>SES-06: Monday 06 - Energy Storage Location: Bobara</td>
<td>SES-07: Monday 07 - Power Markets Location: Šipun</td>
</tr>
<tr>
<td>7:00pm - 11:59pm</td>
<td>Welcome reception: Conference opening ceremony, welcome reception and welcoming speech</td>
<td></td>
</tr>
</tbody>
</table>
Tuesday, 13/Nov/2018

<table>
<thead>
<tr>
<th>Time</th>
<th>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</th>
<th>SES-12: Tuesday 02 - Distributed resources Location: Šipun</th>
<th>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</th>
<th>SES-14: Tuesday 04 - Flexibility Location: Orlando</th>
<th>SES-15: Tuesday 05 - Power Electronics Location: Salon VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00am</td>
<td></td>
<td></td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
<tr>
<td>10:30am</td>
<td>Coffee Break 03: Coffee Break 03</td>
<td></td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
<tr>
<td>11:00am</td>
<td>KEYNOTE 02: CHONGQING KANG Location: Ragusa</td>
<td></td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
<tr>
<td>12:00pm</td>
<td>Lunch 02: Lunch 02 Location: Hotel Restaurant Cavtat</td>
<td></td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
<tr>
<td>1:00pm</td>
<td>SS03: FLEXCOOP Location: Bobara</td>
<td>SS04: SIREN Location: Orlando</td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
<tr>
<td>2:30pm</td>
<td>Coffee Break 04: Coffee Break 04</td>
<td></td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
<tr>
<td>3:00pm</td>
<td>SS05: INTEGRIDY Location: Bobara</td>
<td>SS06: WINDLIPS+FENISG Location: Orlando</td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
<tr>
<td>7:00pm</td>
<td>Gala: Gala dinner</td>
<td></td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
<tr>
<td>10:00pm</td>
<td></td>
<td></td>
<td>SES-11: Tuesday 01 - Microgrid Modelling Location: Bobara</td>
<td>SES-12: Tuesday 02 - Distributed resources Location: Šipun</td>
<td>SES-13: Tuesday 03 - Integrated Energy Systems Location: Salon VII</td>
</tr>
</tbody>
</table>
PROGRAM

Wednesday, 14/Nov/2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00am</td>
<td>SES-16: Wednesday 01 - Power System Dynamics</td>
<td>Bobara</td>
</tr>
<tr>
<td>9:30am</td>
<td>SES-17: Wednesday 02- Concepts and ICT solutions</td>
<td>Šipun</td>
</tr>
<tr>
<td>10:00am</td>
<td>SES-18: Wednesday 03- ICT-driven intelligent solutions and Smart Metering</td>
<td>Salon VII</td>
</tr>
<tr>
<td>10:30am</td>
<td>SES-19: Wednesday 04 - Power System Protection</td>
<td>Orlando</td>
</tr>
<tr>
<td>11:00am</td>
<td>SES-20: Wednesday 05- Data-driven modelling</td>
<td>Salon VI</td>
</tr>
<tr>
<td>10:30am</td>
<td>Coffee Break 05: Coffee Break 05</td>
<td></td>
</tr>
<tr>
<td>11:00am</td>
<td>KEYNOTE 03: YURY DVORKIN</td>
<td>Ragusa</td>
</tr>
<tr>
<td>12:00pm</td>
<td>Lunch 03: Lunch 03</td>
<td>Hotel Restaurant Cavtat</td>
</tr>
<tr>
<td>1:00pm</td>
<td>Tourist trip: Tourist trip Dubrovnik</td>
<td></td>
</tr>
<tr>
<td>2:00pm</td>
<td>RT-01: Round Table Session - The Future of Energy in Croatia</td>
<td>Bobara</td>
</tr>
</tbody>
</table>

Lunch: Hotel Restaurant Cavtat

Tourist trip: Tourist trip Dubrovnik
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00am - 10:30am</td>
<td>SES-21: Thursday 01 - Power System Equipment
Location: Bobara</td>
<td></td>
</tr>
<tr>
<td>10:30am - 11:00am</td>
<td>SES-22: Thursday 02 - Forecasting
Location: Šipun</td>
<td></td>
</tr>
<tr>
<td>11:00am - 12:00pm</td>
<td>SES-23: Thursday 03 - Data Driven Modelling
Location: Salon VII</td>
<td></td>
</tr>
<tr>
<td>12:00pm - 1:00pm</td>
<td>SES-24: Thursday 04 - Operational aspects of power system
Location: Orlando</td>
<td></td>
</tr>
<tr>
<td>1:00pm - 2:30pm</td>
<td>SES-25: Thursday 05 - Power System Modelling and Analyses
Location: Salon VI</td>
<td></td>
</tr>
<tr>
<td>10:30am - 11:00am</td>
<td>Coffee Break 07</td>
<td></td>
</tr>
<tr>
<td>11:00am - 12:00pm</td>
<td>KEYNOTE 04: YONGQIAN LIU
Location: Ragusa</td>
<td></td>
</tr>
<tr>
<td>12:00pm - 1:00pm</td>
<td>Lunch 04
Location: Hotel Restaurant Cavtat</td>
<td></td>
</tr>
<tr>
<td>1:00pm - 2:30pm</td>
<td>SS07: STORY
Location: Bobara</td>
<td></td>
</tr>
<tr>
<td>2:30pm - 3:00pm</td>
<td>Coffee Break 08</td>
<td></td>
</tr>
<tr>
<td>3:00pm - 4:30pm</td>
<td>PS-01: Poster Session
Location: Šipun</td>
<td></td>
</tr>
<tr>
<td>4:45pm - 5:30pm</td>
<td>Closing and Awards: Conference closing and Best paper award
Location: Ragusa</td>
<td></td>
</tr>
<tr>
<td>5:00pm - 5:30pm</td>
<td>SS08: DER
Location: Orlando</td>
<td></td>
</tr>
<tr>
<td>5:30pm - 6:30pm</td>
<td>SS09: THE GLOBAL GRID
Location: Bobara</td>
<td></td>
</tr>
</tbody>
</table>
1. **SESSION 01** - Power system dynamics I
 Session Chair:
 Igor Kuzle, University of Zagreb Faculty of electrical engineering and computing, Croatia

2. **SESSION 02** - Power flows
 Session Chair:
 Kenneth Bruninx, KU Leuven, Belgium

3. **SESSION 03** - Voltage stability
 Session Chair:
 Rafael Zárate-Miñano, Universidad de Castilla - La Mancha, Spain

4. **SESSION 04** - Wind power generators
 Session Chair:
 Hrvoje Pandzic, University of Zagreb Faculty of Electrical Engineering and Computing, Croatia

5. **SESSION 05** - Power electronics I
 Session Chair:
 Miguel Castilla, Technical University of Catalonia, Spain

6. **SESSION 06** – Energy storage
 Session Chair:
 Alexis Polycarpou, Frederick University, Cyprus

7. **SESSION 07** – Power markets
 Session Chair:
 Dubravko Sabolić, Croatian Transmission System Operator Ltd. (HOPS), Croatia

8. **SESSION 08** – Transmission lines
 Session Chair:
 Carlo Alberto Nucci, University of Bologna, Italy
9. **SESSION 09** – Reactive power

 Session Chair:
 Chongqing Kang, Tsinghua University, People's Republic of China

10. **SESSION 10** – Integrated aspects ICT and energy systems

 Session Chair:
 Ning Zhang, Tsinghua University, People's Republic of China

11. **SESSION 11** – Microgrid modelling

 Session Chair:
 Barry Hayes, University College Cork, Ireland

12. **SESSION 12** – Distributed resources

 Session Chair:
 Danijel Topić, University of Osijek, Croatia

13. **SESSION 13** – Integrated energy systems

 Session Chair:
 Filipe Soares, Institute for Systems and Computer Engineering of Porto (INESC Porto), Portugal

14. **SESSION 14** - Flexibility

 Session Chair:
 Andrej Gubina, University of Ljubljana, Slovenia

15. **SESSION 15** - Power electronics II

 Session Chair:
 Dr. Stjepan Sučić, Končar KET inc., Croatia
16. **SESSION 16** - Power system dynamics II

 Session Chair:

 Augustin Irizarry Rivera, University of Puerto Rico, Puerto Rico (U.S.)

17. **SESSION 17** – Concepts and ICT solutions

 Session Chair:

 Ioannis Vlachos, NTUA, Greece

18. **SESSION 18** - ICT-driven intelligent solutions and Smart metering

 Session Chair:

 Miltos Alamaniotis, University of Texas at San Antonio, United States of America

19. **SESSION 19** - Power system protection

 Session Chair:

 Styliani Sarri, National Technical University of Athens (NTUA) & Regulatory Authority for Energy (RAE), Greece

20. **SESSION 20** – Data-driven modelling I

 Session Chair:

 Manuel Serrano, ETRA I+D, Spain

21. **SESSION 21** – Power system equipment

 Session Chair:

 Matej Zajc, University of Ljubljana, Slovenia

22. **SESSION 22** – Forecasting

 Session Chair:

 Tomislav Capuder, University of Zagreb, Croatia
23. **SESSION 23** – Data-driven modelling II

Session Chair:
Gady Golan, Ariel University, Israel

24. **SESSION 24** – Operational aspects of power system

Session Chair:
Yongqian Liu, North Chine Power Electric University, People’s Republic of China

25. **SESSION 25** – Power system modelling and analysis

Session Chair:
Carlos Moreira, INESC TEC Porto, Portugal
SESSIONS

SES-01: Monday 01 - Power system dynamics

Monday, 12/Nov/2018: 9:00am - 10:30am Location: Bobara

Efficient Identification of Critical Load Model Parameters Affecting Transient Stability
Yue Zhu, Jovica Milanović
University of Manchester, United Kingdom; yue.zhu-5@postgrad.manchester.ac.uk

Stability Assessment of Complex Power Systems – Time Domain Simulations vs Direct Methods
Ahsan Shahid
Independent, United States of America; ahsansahid2008@hotmail.com

An Investigation into the Impact of Generator Dispatch on Transient Stability in Power Systems with Renewable Generation
Robert Ian Hamilton, Panagiotis Papadopoulos, Keith Bell
University of Strathclyde, Glasgow; robert.hamilton@strath.ac.uk

A simple model to analyse the frequency behaviour of interconnected power systems with high renewable penetration
Alejandro Marano-Marcolini, José Luis Martinez-Ramos, Moisés García-Ruiz, Gabriel Cantos-Alcantara
Universidad de Sevilla, Spain; alejandromm@us.es

Ultra-Fast Distance Protection Algorithm in Time-Domain Based on a Gamma Model of Line
Neriton Hoxha, Jean-Claude Maun
Université Libre de Bruxelles, Belgium; nhoxha@ulb.ac.be

Analysis of the Wind Generation Impact on Inertial and Primary Frequency Response of the Croatian Electric Power System
Tomislav Baškarad, Igor Kuzle, Josip Đaković, Perica Ilak
University of Zagreb, Croatia; tomislav.baskarad@fer.hr
SESSIONS

SES-02: Monday 02 - Power Flows
Monday, 12/Nov/2018: 9:00am - 10:30am
Location: Šipun

Chance-Constrained Optimal Power Flow with Non-Parametric Probability Distributions of Dynamic Line Ratings

Nicola Viafora¹, Stefanos Delikaraoglou², Pierre Pinson¹, Joachim Holbøll¹
¹Technical University of Denmark (DTU), Denmark; ²EEH - Power Systems Laboratory of ETH Zurich, Zurich, Switzerland; nicovia@elektro.dtu.dk

Comparison of OPF formulations considering DSO capability to provide ancillary services

Martin Bolfek¹, Tomislav Capuder²
¹HEP ODS d.o.o., Croatia; ²University of Zagreb, Faculty of electrical engineering and computing; martin.bolfek@hep.hr

Bi-level Minimum Loading Unit Commitment for Small Isolated Power Systems

Georgios Psarros, Stavros Papanastassiou
National Technical University of Athens, Greece; gpsarros@mail.ntua.gr

Robust optimization for the scheduling of isolated RES-based microgrids in developing countries

Marina Petrelli, Alberto Berizzi, Cristian Bovo, Edoardo Amaldi
Politecnico di Milano, Italy; marina.petrelli@mail.polimi.it

Expert System for topological remedial action discovery in smart grids

Antoine Marot, Benjamin Donnot, Sami Tazi, Patrick Panciatici
RTE, France, antoine.marot@rte-france.com
SESSIONS

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES-03: Monday 03</td>
<td>Monday, 12/Nov/2018</td>
<td>9:00am - 10:30am</td>
<td>Salon VII</td>
</tr>
</tbody>
</table>

Grid Voltage Regulation with Optimal Reactive Power Effort by Active Front End Converters

Johnny Chhor, Constantinos Sourkounis
Ruhr-University Bochum, Germany; chhor@enesys.rub.de

An Under Voltage Load Shedding Scheme Based on a Short Term Voltage Instability Detection Method

Arun Joseph, Milos Cvekovic, Peter Palensky
TU delft, Netherlands, The; arun.joseph@tudelft.nl

Capacitances versus Losses in Medium-Voltage Transformer Using Bio-Inspired Computing

Rafael Bastos Santos, Alessandra Freitas Picanco
Federal Institute of Bahia - IFBA, Brazil; alepicanco@ifba.edu.br

Controlled Islanding of Power Systems Considering Voltage Stability Constraints

Panayiotis Demetriou, Alexis Kyriakou, Elias Kyriakides, Christos Panayiotou
University of Cyprus, KIOS Research and Innovation Center of Excellence, Cyprus; kyriacou.alexis@ucy.ac.cy

A Comparative Analysis of the Calculated Values and Concrete Measurements of no-load Power Losses of the 400 kV Interconnecting Transmission Link Kosovo–Albania

Gazmend Xhevdet PULA¹, Gazmend KABASHI², Kadri KADRIU²
¹University of Prishtina, Electrical Engineering Faculty, Power Department, Kosovo; ²KOSTT, Kosovo Transmission and Market Operator, Prishtina, Kosovo; gazmend.pula@gmail.com
<table>
<thead>
<tr>
<th>SESSIONS</th>
<th>Monday, 12/Nov/2018: 9:00am - 10:30am</th>
<th>Location: Orlando</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES-04: Monday 04 - Wind power generators</td>
<td>Flying Start of a Permanent Magnet Wind Generator Using Discontinuous Currents and Sliding-Mode Observer</td>
<td>Filip Jukić, Tin Bariša, Luka Pravica, Damir Sumina</td>
</tr>
<tr>
<td></td>
<td>University of Zagreb Faculty of Electrical Engineering and Computing, Croatia; filip.jukic@fer.hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy Performance of Power Voltage Transformers</td>
<td>Igor Žiger¹, Dijana Papić¹, Marko Ćukman¹, Dalibor Filipović-Grčić²</td>
</tr>
<tr>
<td></td>
<td>¹Končar - Instrument Transformers, Croatia; ²Končar - Electrical Engineering Institute; igor.ziger@koncar-mjt.hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improved Real Time Emulator of a Wind Turbine Dynamic Model</td>
<td>Jakub Osmić¹, Mirza Kusljugić¹, Emir Omerdíc², Mahdi Ebrahimisalari³, Daniel Toal³</td>
</tr>
<tr>
<td></td>
<td>¹University of Tuzla, Bosnia and Herzegovina; ²Cement Factory Lukavac, BIH; ³University of Limerick, Ireland; jakub.osmic@gmail.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modelling of the Wind Rotor of WECs for the Analysis of Wind Effects Influencing the Drivetrain</td>
<td>Katharina Günther, Benedikt Spichartz, Constantinos Sourkounis</td>
</tr>
<tr>
<td></td>
<td>Ruhr-University Bochum, Germany; guenther@enesys.rub.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PI and State Space Speed Control for Drive Systems With Elastic Coupling and Very Small Inertia Ratio</td>
<td>Philip Krajinski, Florian Bendrat, Constantinos Sourkounis</td>
</tr>
<tr>
<td></td>
<td>Ruhr University Bochum, Germany; office@enesys.rub.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effectiveness of Wind Turbine Fast Frequency Response Control on Electrically Distanced Active Power Disturbance Mitigation</td>
<td>Josip Đaković, Perica Ilak, Tomislav Baškarad, Igor Kuzle</td>
</tr>
<tr>
<td></td>
<td>University of Zagreb, Croatia; josip.djakovic@fer.hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysing Frequency Support from DFIG-based Wind Turbines - Impact of Parameters and Initial Conditions</td>
<td>Matej Krpan¹, Igor Kuzle¹, Yongqian Liu²</td>
</tr>
<tr>
<td></td>
<td>¹Faculty of Electrical Engineering and Computing, Croatia; ²North China Electric Power University, China; matej.krpan@fer.hr</td>
<td></td>
</tr>
</tbody>
</table>
STATCOM Application for Voltage Profiling of a Distribution Grid with High Penetration of Distributed Energy Resources
Jibrán Ali, Stefano Massucco, Federico Silvestro
University of Genova; jali@ncsu.edu

Performance Evaluation and Benchmarking of PLL Algorithms for Grid-Connected RES Applications
Zunaib Ali, Nicholas Christofides, Alexis Polycarpou
Frederick University, Cyprus; eng.pa@frederick.ac.cy

Comparison of Typical Power Electronics Converter Topologies for Renewable Energy Systems
Amir Trbalić, Denis Pelin, Damir Šljivac
University of Osijek, Croatia; amir.trbalic@gmail.com

Self-inductance Variations in Dynamic Inductive Charging of EVs
Ioannis Karakitsios, Nikos Hatzigiargyriou
National Technical University of Athens, Greece; jkarak@power.ece.ntua.gr

On a method for testing ICA based Blind Source Separation algorithm performance applicable in audio-based On-Load Tap Changer diagnostics
Adnan Secić¹, Nikica Hlupić², Igor Kuzle³
¹DV Power Sweden / Faculty of Electrical Engineering and Computing, Zagreb, Croatia; ²Department of Applied Computing, Faculty of Electrical Engineering and Computing, Zagreb, Croatia; ³Power System Department, Faculty of Electrical Engineering and Computing, Zagreb, Croatia; adnan.sevic@fer.hr
Strategies for Combined Operation of PV/Storage Systems Integrated to Electricity Markets
Thomas Carriere¹, Christophe Vernay², Sebastien Pitaval², François-Pascal Neirac¹, George Karinotakis¹
¹Mines Paristech, PSL Research University, France; ²SOLAIS; thomas.carriere@mines-paristech.fr

Impact of the Operation of Storage Equipments in the Iberian Electricity Market Prices
Inês Amorim Gomes¹, João Tomé Saraiva¹,²
¹FEUP DEEC; ²INESC TEC; jsaraiva@fe.up.pt

Characteristics of Residential Battery Storage System for Better Integration with Electric Distribution System
Karen Vanessa Montano Martinez, Sergio Ivan Alzate Drada, Agustin Irizarry Rivera, Fabio Andrade
University of Puerto Rico, Mayaguez, Puerto Rico (U.S.); karenvanessa.montano@upr.edu

Decentralized Uncertainty Mitigation through Multi-Energy Systems
António Coelho, Nilufar Neyestani, Filipe Soares, João Peças Lopes
INESC TEC, Portugal; amcoelho@inesctec.pt

A Detailed Li-ion Battery Operation Model for Day-ahead Economic Dispatch
Alvaro Gonzalez-Castellanos, David Pozo, Aldo Bischi
Skolkovo Institute of Science and Technology, Russian Federation; alvaro.gonzalez@skolkovotech.ru

A Review of Energy Storage Systems Applications
Marija Miletić¹, Zora Luburić¹, Ivan Pavić¹, Tomislav Capuder¹, Hrvoje Pandžić¹, Ivan Andročec², Anton Marušić²
¹University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; ²Croatian Power Utility (Hrvatska Elektroprivreda d.d.), Croatia; zora.luburic@fer.hr
SES-07: Monday 07 – Power Markets

Monday, 12/Nov/2018: 3:00pm - 4:30pm
Location: Šipun

A Primal-Dual Formulation for the Clearing of the European Day-Ahead Electricity Market

Dimitris Chatzigiannis, Pandelis Biskas, Ilias Marneris, Anastasios Bakirtzis, Alex Papalexopoulos
Aristotle University of Thessaloniki, Greece; alexp@eccointl.com

A System Dynamics / Merit Order Pricing model for liberalized power system planning

A.S. Ibanez-Lopez, B.Y. Moratilla-Soria
Comillas Pontifical University, Spain; sibanez@sloan.mit.edu

Impact of Cyber-Security Breach to Price Signals on Power Market: An Experimental Human Simulation

Gokturk Poyrazoglu¹, HyungSeon Oh²
¹Ozyegin University, Turkey; ²The State University of New York at Buffalo, USA; gokturk.poyrazoglu@ozyegin.edu.tr

Preventing Internal Congestion in an Integrated European Balancing Activation Optimization

Martin Håberg, Hanna Bood, Gerard Doorman
Norwegian University of Science and Technology, Norway; martin.haberg@ntnu.no

Balancing Services Business Use Case Development for TSO-DSO Interoperability Demonstration

Hugo Morais¹, Belén Goncer¹, Jérôme Cantenot¹, Eric Lambert¹, Gareth Taylor², Andrej Souvent³, Nermin Suljanovic³
¹EDF Lab Paris-Saclay Palaiseau, France; ²Brunel Institute of Power Systems, Brunel University London, UK; ³Elektroinstitut Milan Vidmar (EIMV), Ljubljana, Slovenia; Nermin.Suljanovic@eimv.si

Strategic Participation of Merchant Energy Storage in Joint Energy-Reserve and Balancing Markets

Arthur Schillemans¹, Gustavo De Vivero Serrano²,³, Kenneth Bruninx²,³,⁴
¹BCG, Belgium; ²³KU Leuven, Belgium; ³EnergyVille, Belgium; ⁴VITO, Belgium; kenneth.bruninx@kuleuven.be
SES-08: Monday 08 – Transmission lines

Monday, 12/Nov/2018: 3:00pm - 4:30pm Location: Salon VII

Short-term Ampacity Forecasting based on Linear Regression in a Distribution Line
Rafael Alberdi, Roberto Fernandez, Elvira Fernandez, Igor Albizu, Miren T. Bedialauneta, A. Javier Mazon, Agurtzane Etxegarai
University of the Basque Country UPV/EHU, Spain; igor.albizu@ehu.eus

Transmission Line Length Estimation based on Electrical Parameters
Til Kristian Vrana, Iver Bakken Sperstad
SINTEF Energi, Norway; vrana@sintef.no

Statistical Learning to Assess Overhead Line Lifespan
Vincent Laurent¹, Mathilde Mougeot², Christine Yang³, Fikri Hafid³, Jean-Michel Ghidaglia⁴, Nicolas Vayatis⁴
¹Eurobios, France; ²LPSM, Université Paris Diderot; ³RTE, DIRECTION R&D-I; ⁴CMLA, ENS Paris-Saclay; vlaurent@eurobios.com

Thermal State Analysis on Bundled Overhead Line Conductors
Shahnurriman Abdul Rahman, Konstantinos Kopsidas
The University of Manchester, United Kingdom; shahnurriman.abdulrahaman@manchester.ac.uk

Selection of Power Cable Accessories in The Transmission System With Presence of High Frequency Harmonics
Nebojsa Raicevic¹, Mario Vrazic²
¹University of Nis, Faculty of Electronic Engineering, Serbia; ²University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; nebojsa.raicevic@elfak.ni.ac.rs

Finite Element Modelling of Aeolian Vibrations on Stranded High-Voltage OHL Conductors
Mohammed Abdulaziz Al Aqil, Konstantinos Kopsidas
The University of Manchester, United Kingdom; mohammedabdulaziz.alaqil@manchester.ac.uk
<table>
<thead>
<tr>
<th>SESSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES-09: Monday 09 – Reactive Power</td>
</tr>
<tr>
<td>Monday, 12/Nov/2018: 3:00pm - 4:30pm</td>
</tr>
<tr>
<td>Location: Orlando</td>
</tr>
</tbody>
</table>

Future Operational Concepts for Reactive Power Compensators in Transmission Grids
Markus Knittel¹, Janek Massmann¹, Armin Schnettler¹, Dmitrij Kamenschikow²
¹RWTH Aachen University, Germany; ²Ampron GmbH, Germany; knittel@ifht.rwth-aachen.de

Reactive Optimal Power Flow in the Temperature-Dependent Power Flow using Interior Point Method with Artificial Neural Network
Alessandra Freitas Picanço¹, Andressa Pereira Oliveira²
¹Federal Institute of Bahia IFBA, Brazil; ²Federal University Bahia's West UFOB, Brazil; afpicanco@gmail.com

Aggregated Active and Reactive Power and Energy Management of Distributed Energy Resources and Performance Evaluation
Mustafa Alparslan Zehir¹, Antonio Barbosa², Carlo Sandroni³, Luigi Pellegrino³, Riccardo Lazzari³, Maurizio Verga³, Mustafa Bagriyanik¹, Unal Kucuk⁴, Filipe Joel Soares², Aydogan Ozdemir¹
¹Istanbul Technical University, Istanbul, Turkey; ²INESC TEC, Porto, Portugal; ³RSE S.p.A., Milan, Italy; ⁴MAKEL Company, Istanbul, Turkey; ozdemiraydo@itu.edu.tr

Integration of Electricity Generation from RES Supported by Feed in Tariff in an Organized Electricity Market
Aleksandra Krkoleva Mateska, Petar Krstevski, Vesna Borozan, Rubin Taleski
University Ss. Cyril and Methodius in Skopje, Faculty of Electrical Engineering and IT, Macedonia, Former Yugoslav Republic of; krkoleva@feit.ukim.edu.mk

Preliminary analysis of an accidental deviation in the power system grid time
Niko Mandić¹, Minea Skok², Marko Rekić¹
¹Croatian Transmission System Operator Ltd, Croatia; ²Energy Institute Hrvoje Požar; marko.rekic@hops.hr
Interdependencies between Smart Grids and Electricity Markets: European Status Quo
Styliani Sarri¹, Nikos D. Hatzigiargyiou²
¹National Technical University of Athens (NTUA), Regulatory Authority for Energy (RAE); NTUA; ssarri@power.ece.ntua.gr

Efficient regulation – precondition for electricity market development
Eraldo Banovac¹, Darko Pavlović², Dalibor Pudić¹, Igor Kuzle³
¹Croatian Energy Regulatory Agency; ²Plinacro.; ³Uni. of Zagreb, Faculty of Electrical Engineering and Computing; eraldo.banovac@zg.t-com.hr

Evaluating the Evolution of Distribution Networks under Different Regulatory Frameworks with Agent Based Modelling
Miguel Manuel de Villena¹, Raphael Fonteneau¹, Axel Gautier², Damien Ernst¹
¹Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liege; ²LCII, Department of Economics, HEC Liege, University of Liege; mvillena@uliege.be

An Auction for Financial Storage Rights
Abu Alam, Joshua Taylor ; University of Toronto; a.alam@utoronto.ca

A hybrid agent-based secondary control for microgrids with increased fault-tolerance needs
Angelina D. Bintoudi¹, Lampros M. Zygilakis⁴, Apostolos C. Tsolakis¹, Dimosthenis Ioannidis¹, Salem Al-Agash¹, Jose L. Martinez-Ramos³, Ahmet Onen¹, Brian Azzopardi³, Lenos Hadjiedemiou³, Nis Martensen³, Mounir Khat³, Nicholas Borg³, Nunzatina Fragale¹⁰, Charis Demoulas¹¹, Dimitrios Tzovaras¹
¹Information Technologies Institute, Greece; ²German Jordanian University; ³Universidad de Sevilla, Spain; ⁴Department of Electrical and Electronics Engineering, Abdullah Gul University, Turkey; ⁵MCAST, Triq Kordin, Malta; ⁶KIOS Research Center of Excellence, University of Cyprus, ⁷Energynautics GmbH, Germany; ⁸Département de génie électrique Laboratoire SCAMRE, Ecole Nationale Polytechnique d'ORAN; ⁹Electronic Systems Design Ltd, Malta; ¹⁰GeoSYS Ltd, Malta; ¹¹Department of Electrical & Computer Engineering, Aristotle University, Greece; zygilakis@iti.gr

Explorative ex-ante consumer cluster delineation for electrification planning using image processing tools
Fabian Heymann¹, Pablo Dueñas Martinez², Filipe Joel Soares³, Vladimiro Miranda⁴
¹MIT, INESC TEC and University of Porto; ²Massachusetts Institute of Technology (MIT); ³INESC; ⁴INESC TEC and University of Porto; fabian.heymann@fe.up.pt
<table>
<thead>
<tr>
<th>SESSIONS</th>
<th>Tuesday, 13/Nov/2018: 9:00am - 10:30am</th>
<th>Location: Bobara</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES-11: Tuesday 01 – Microgrid Modelling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Optimal Allocation of Multiple Unified Power Flow Controllers Using Particle Swarm Optimization**
Orestis Blanas, Panagiotis Karafotis, Pavlos Georgilakis
National Technical University of Athens (NTUA), Greece; panoskaraf@gmail.com |
| **A Two-Stage Management Approach for a PV-battery Microgrid Cluster**
Manuel Vaz Castro¹, Carlos Leal Moreira¹⁻², Leonel Magalhães Carvalho¹
¹Institute for Systems and Computer Engineering, Technology and Science, Portugal; ²Faculty of Engineering of University of Porto, Portugal; manuel.v.castro@inesctec.pt |
| **Optimal Sizing and Economic Operation of Hybrid PV System for MBTS Using Meta-heuristic Techniques**
Mahmoud Mohamed Sayed, Mohamed Shalaby, Sami Bakhoum, Haitham Mahmoud
Cairo University, Egypt; eng.haitham.2007@gmail.com |
| **Large Signal Stability Analysis in Clustering of Microgrids Using A Hybrid Method**
Kishan Veerashekar, Alexander Goepel, Matthias Luther
University Erlangen-Nuremberg, Germany; kishan.veerashekar@fau.de |
| **Gridsol performance on the island of Crete**
Revekka Gkogkou¹, Georgia Asimakopoulou¹, Aris Dimeas¹, Nikos D. Hatziargyriou¹, Maria Kourasi², Petros Markopoulos², José Miguel Estebanaz³
¹National Technical University of Athens, Greece; ²HEDNO Greece; ³Cobra Energia; jose.estebanaz@grupocobra.com |
| **Advanced Metering Applications in Microgrids: A Hardware-in-the-Loop (HIL) Electric Power Setup**
Sergio Alzate Drada, Karen Vanessa Montano Martinez, Agustín Irizarry, Fabio Andrade
University of Puerto Rico, Mayaguez, Puerto Rico (U.S.); sergio.alzate@upr.edu |
<table>
<thead>
<tr>
<th>SESSION</th>
<th>Description</th>
<th>Date and Time</th>
<th>Location</th>
</tr>
</thead>
</table>
| SES-12: Tuesday 02 – Distributed resources | **Preliminary viability assessment of an above-ground compressed air energy storage plant integrated in an existing wind farm**
*Manuel Chazarra*¹, *Juan I. Pérez-Díaz*¹, *Raquel Gómez-Vázquez*², *Seamus Garvey*³
¹Universidad Politécnica de Madrid, Spain; ²Vías y Construcciones S.A., Spain; ³University of Nottingham; manuel.chazarra@upm.es | Tuesday, 13/Nov/2018: 9:00am - 10:30am | Šipun |
| | **Beijing Subsidiary Administrative Center Multi-Energy Systems: An Optimal Configuration Planning**
*Wujing Huang*¹, *Ning Zhang*¹, *Chongqing Kang*¹, *Tomislav Capuder*², *Ninoslav Holjevac*², *Igor Kuzle*²
¹Department of Electrical Engineering, Tsinghua University, Beijing, China; ²Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia; 163.com.hwj@163.com | | |
| | **Impact of Distributed Generation on Power Quality in Distribution Network**
Zvonimir Klaić, *Mario Primorac*, *Danijel Topić*, *Goran Knežević*
Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Croatia; zvonimir.klaic@ferit.hr | | |
| | **Optimal Integration of Distributed Generators in the Iraq Power System**
*Saad Khalaf*¹,², *Liana Cipcigan*¹
¹Cardiff University, United Kingdom; ²Al-Mustansiriya University, Iraq; khalafS@cardiff.ac.uk | | |
| | **The benefits of synergy between the heating and power system regarding RES volatility and balancing**
*Helena Čevapović*², *Ivan Rajši*¹, *Nenad Švarc*², *Tomislav Robina*²
¹University of Zagreb Faculty of Electrical Engineering and Computing, Croatia; ²HEP-Proizvodnja Ltd.; helena.cevapovic@hep.hr | | |
| | **Operation Chart Study of Multi-Inverter Photovoltaic Power Plant Connected to Medium Voltage Grid**
*Mihovil Ivas*², *Ante Marusic*¹, *Juraj George Havelka*¹, *Igor Kuzle*¹
¹University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; ²Lahmeyer International GmbH, Bad Vilbel, Germany; igor.kuzle@fer.hr | | |
Synergy of the electric power and gas transmission system regulation in the Republic of Croatia
Tomislav Robina¹, Nenad Švarc¹, Ivica Pavić², Helena Čevapović³
¹HEP-Proizvodnja Ltd., Croatia; ²University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; tomislav.robina@hep.hr

Natural Gas System Dispatch Accounting for Electricity Side Flexibility
Conor O Malley¹, Stefanos Delikaraoglou¹, Line Roald², Gabriela Hug¹
¹ETH Zurich, Switzerland; ²University of Wisconsin, Madison, United States; omalleyc@eeh.ee.ethz.ch

Centralised Planning of National Integrated Energy System with Power-to-Gas and Gas Storages
Mathias Berger¹, David Radu², Raphael Fonteneau¹, Damien Ernst¹, Thierry Deschuyteneer², Ghislain Detienne²
¹University of Liège, Belgium; ²Fluxys SA, Belgium; mathias.berger@uliege.be

Overview of techno-economic issues of enhanced geothermal systems implementation and integration
Tena Bilić¹, Ivan Rajšić¹, Perica Ilak¹, Sara Raos¹, Siniša Šadek¹, Slavko Krajić¹, Nenad Debrecin¹, Albert Genter², Eric Leoutre³
¹University of Zagreb Faculty of Electrical Engineering and Computing, Croatia; ²ES-Geothermie, Schiltigheim, France; ³Vermilion REP SAS, Parentis-en-Born, France; tena.bilic@fer.hr

Economic and environmental assessment for enhanced geothermal systems integration into energy systems Decision-making support tool for optimal usage of geothermal energy
Perica Ilak¹, Sara Raos¹, Ivan Rajšić¹, Ghislain Trullenque², Tena Bilić¹, Siniša Šadek¹, Ante Marušić¹
¹University of Zagreb Faculty of Electrical Engineering and Computing, Croatia; ²Département GEOS UniLaSalle; sara.raos@fer.hr

Optimized Asset Management in Distribution Systems Based on Predictive Risk Analysis
Tatjana Dokić, Mladen Kezunovic
Texas A&M University, College Station, United States of America; kezunov@ece.tamu.edu
SES-14: Tuesday 04 – Flexibility
Tuesday, 13/Nov/2018: 9:00am - 10:30am
Location: Orlando

Day-Ahead Management of Smart Homes Considering Uncertainty and Grid Flexibilities
Carlos Adrian Correa-Florez, Andrea Michiorri, Alexis Gerossier, Georges Kariniotakis
MINES ParisTech, PSL-Research University, France; carlos-adrian.correa_florez@mines-paristech.fr

Distribution Network Planning Using Detailed Flexibility Models for DER
Bruna Daniela Costa Tavares, Filipe Soares
INESC TEC, Portugal; bruna.c.tavares@inesctec.pt

OPF Integrating Distribution Systems Flexibility for TSO Real-Time Active Power Balance Management
Florin Capitanescu
Luxembourg Institute of Science and Technology (LIST), Luxembourg; florin.capitanescu@list.lu

Bottom-up Approach to Compute DER Flexibility in the Transmission-Distribution Networks Boundary
Nuno Soares Fonseca¹, Nilufar Neyestani¹, Filipe Joel Soares¹, José Iria¹, Carlos Henggeler Antunes², Diogo Pinto², Humberto Jorge², Marta Lopes²
¹INESC TEC, Portugal; ²INESC Coimbra; nuno.s.fonseca@inesctec.pt

Predictive Voltage Control for LV Distribution Grids exploiting Flexibility from Domestic Customers
Micael Simões, Hélder Costa, André Madureira
INESC TEC, Portugal; andre.g.madureira@inesctec.pt

Flexibility Potential of Industrial Electricity Demand: Insights from the H2020 IndustrRE project
Dimitrios Papadaskalopoulos, Roberto Moreira, Goran Strbac, Danny Pudjianto, Predrag Djapic, Fei Teng
Imperial College London, United Kingdom; d.papadaskalopoulos08@imperial.ac.uk
Control of a Power Conditioning System with LCL filter for Seamless Transfers between Grid-Connected and Island Operation
Florian Bendrat, Constantinos Sourkounis
Institute for Power Systems Technology and Power Mechatronics, Ruhr University Bochum; office@enesys.rub.de

Aggregated dynamic modelling of converter-dominated active distribution networks for large voltage disturbances
Nuno Fulgêncio1, Carlos Moreira1,2, Leonel Carvalho1, João Peças Lopes1,2
1INESC TEC, Portugal; 2University of Porto, Faculty of Engineering; nuno.r.fulgencio@inescporto.pt

Variable Bandwidth Hysteresis Current Control of Voltage Source Converters with LCL Filter
Johnny Chhor, Constantinos Sourkounis
Ruhr-University Bochum, Germany; chhor@enesys.rub.de

Active Damping of LCL-Filter Resonance based on Capacitor-Current Feedback in Grid-Connected VSC
Vile Kipke, Johnny Chhor, Constantinos Sourkounis
Ruhr-University Bochum, Germany; chhor@enesys.rub.de

Grid Connected Converter Control Technique in Active Unbalanced Distribution Systems
Boris Dumnic1, Bane Poapdic1, Dragan Milicevic1, Nikola Vukajlovic1, Marko Delimar2
1University of Novi Sad, Faculty of Technical Sciences, Serbia; 2University of Zagreb, Faculty of Electrical Engineering and Computing; dumnic@uns.ac.rs

Control developments in power electronics-based distributed generators for future grid services
Miguel Castilla, Luis García de Vicuna, Jaume Miret, Antonio Camacho, Ramon Guzman
Technical University of Catalonia, Spain; miguel.castilla@upc.edu
<table>
<thead>
<tr>
<th>SESSIONS</th>
<th>Location: Bobara</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES-16: Wednesday 01 – Power System Dynamics</td>
<td>Wednesday, 14/Nov/2018: 9:00am - 10:30am</td>
</tr>
<tr>
<td>Impedance-Based Modelling of Hybrid AC-DC Grids With Synchronous Generator for Interaction Study and Dynamic Improvement</td>
<td></td>
</tr>
<tr>
<td>Adedotun Jeremiah Agbemuko¹,², Jose Luis Dominguez-Garcia¹, Oriol Gomis-Bellmunt²</td>
<td>¹Institut de Recerca en Energia de Catalunya, Spain; ²Universitat Politecnica de Catalunya; aagbemuko@irec.cat</td>
</tr>
<tr>
<td>Unbalance and Distortion Evaluation in Three-phase Systems Under Non-stationary Conditions</td>
<td></td>
</tr>
<tr>
<td>Panagiotis A. Karafotis, Pavlos S. Georgilakis</td>
<td>National Technical University of Athens, Greece; panoskaraf@gmail.com</td>
</tr>
<tr>
<td>Analysis of Power Oscillations and Their Treatment in Hydro Power Plant with Large Bulb Turbines</td>
<td></td>
</tr>
<tr>
<td>Miljenko Brezovec¹, Igor Kuzle²</td>
<td>¹HEP-Proizvodnja d.o.o., Croatia; ²Faculty of Electrical Engineering and Computing, Zagreb, Croatia; miljenko.brezovec@hep.hr</td>
</tr>
<tr>
<td>Prony Analysis and Robust RLS for electromechanical oscillations: an evaluation technique</td>
<td></td>
</tr>
<tr>
<td>Sjur Føyen, Mads-Emil Kvammen, Olav Bjarte Fosso</td>
<td>NTNU, Norway; føyen.sjur@ntnu.com</td>
</tr>
<tr>
<td>Distributed Co-Simulation for Collaborative Analysis of Power System Dynamic Behavior</td>
<td></td>
</tr>
<tr>
<td>Claudio David López, Milos Cvetkovic, Peter Palensky</td>
<td>Delft University of Technology, Netherlands, The; C.D.Lopez@tudelft.nl</td>
</tr>
</tbody>
</table>
A unified model of peer to peer energy trade and electric vehicle charging using blockchains
Subhasis Thakur¹, Barry P. Hayes², John G. Breslin¹
¹National University of Ireland, Galway, Ireland; ²University College Cork, Cork, Ireland; subhasis.thakur@insight-centre.org

Co-simulation of Electricity Distribution Networks and Blockchain Energy Trading Platforms
Barry Hayes¹,², Subhasis Thakur²,³, John Breslin²,³
¹University College Cork, Ireland; ²National University of Ireland Galway, Ireland; ³Insight Centre for Data Analytics, Ireland; barry.hayes@ucc.ie

Decentralised electricity trading in the microgrid Implementation of blockchain based peer-to-peer concept for electricity trading
Perica Ilak¹, Ivan Rajši¹, Zlatko Zmijarević³, Lin Herencić², Slavko Krajcar¹
¹University of Zagreb Faculty of Electrical Engineering and Computing, Croatia; ²EKNERG - Energy and Environmental Protection Institute; ³Department for High-Efficiency Cogeneration Croatian Energy Regulatory Agency Zagreb, Croatia; lin.herencic@ekonerg.hr

Synergies between Electric Vehicles and Distributed Renewable Generation? Census-based EV and PV adopter analysis using Mutual Information and GIS
Fabian Heymann¹, Mário Lopes², João M. Silva¹, Filipe Joel Soares³, André Dias³, Vladimiro Miranda¹
¹INESC TEC and University of Porto, Portugal; ²CEiiA, Portugal; ³CEiiA and University of Porto.; ⁴INESC TEC, fabian.heymann@fe.up.pt

Design of Tools for PEV-integration Studies
Rafael Zarate-Miñano, Alberto Flores Burgos, Miguel Carrión
Universidade de Castilla - La Mancha, Spain; rafael.zarate@uclm.es

SCADA Maintenance and Refurbishment with Security Issue in Modern IT and OT Environment
Igor Ivanković¹, Ana Kekelj¹, Renata Rubeša¹, Igor Kuzle²
¹Croatian Transmission System Operator (HOPS), Croatia; ²University of Zagreb; igor.kuzle@fer.hr
SESSIONS

SES-18: Wed 03 – ICT-driven intelligent solutions and Smart Metering

Wed, 14/Nov: 9:00-10:30am
Location: Salon VII
Conversion Error of Second Order Polynomial ZIP to Exponential Load Model Conversion
Madis Leinakse, Jako Kilter
Tallinn University of Technology, Estonia; madis.leinakse@ttu.ee

RTGo – maintenance management system with Augmented Reality SCADA integration
Miro Antonijevic, Stjepan Sucic, Zlatan Sicanica, Hrvoje Keko
Koncar KET, Croatia; miro.antonijevic@koncar-ket.hr

Testing IEC 60870-5-104 and C37.118 based Control Center Applications using a Real Time Simulation Platform
Shoaib Ansari1, Eric Glende2, Martin Wolter2, Davood Babazadeh1, Sebastian Lehnhoff1
1OFFIS e.V; 2Otto von Guericke University Magdeburg (LENA); eric.glende@ovgu.de

Error Performance Analysis of Narrow-Band PLC Technology Enabling Smart Metering Systems
Dzemo Borovina1, Matej Zajo2, Aljo Mujcio3, Andrea Tonello4, Nermin Suljanovic3,5
1Elektroprivreda BiH, Sarajevo, BiH; 2University of Ljubljana, Ljubljana, Slovenia; 3University of Tuzla, Tuzla, Bosnia and Herzegovina; 4Alpe Adria University Klagenfurt, Austria; 5Milan Vidmar Electric Power Research Institute, Ljubljana, Slovenia; nermin.suljanovic@gmail.com

Building Automation Systems and Smart Meter Integrated Residential Customer Platform
Zafer Aydin1, João Carlos Portela1, Unal Kucuk1, Mustafa Alparslan Zehir2, Hakan Gul2, Mustafa Bagriyanik2, Filipe Joel Soares3, Aydogan Ozdemir2
1MAKEL Elektrik Malz. San. Tic. Company, Istanbul, Turkey; 2Istanbul Technical University, Istanbul, Turkey; 3INESC TEC, Porto, Portugal; ozdemiraydo@itu.edu.tr

SIPS development method and busbar splitting scheme supported by PMU technology
Zoran Zbunjak1, Igor Kuzle2
1HOPS, Croatia; 2FER, Croatia; zoran.zbunjak@hops.hr

Comparison of Measured and Calculated Data for NPP Krško CILR Test
Stefica Vlahovic, Davor Grbic, Sinisa Sadek, Tomislav Fancev, Vesna Bencik
University of Zagreb, Croatia; stefica.vlahovic@fer.hr
Comparing a Simplified Decentralized with an Optimal Centralized Technique for After Fault Reconfiguration of Radial Distribution Grids
Athanasios Anastasiou, Iasonas Kouveliotis Lysikatos, Ioannis Karakitsios, Nikos Hatziargyriou
National Technical University of Athens, Greece; jkarak@power.ece.ntua.gr

Smart Transformers Control Strategies for Multi-Microgrids Islanding Operation
Mário Couto¹, João Peças Lopes², Carlos Moreira²
¹FEUP-University of Porto, Faculty of Engineering; ²FEUP & INSC TEC; up200503817@fe.up.pt

Advanced Techniques of System Restoration and Practical Applications
Dhruv Sharma¹, Chenxi Lin², Xiaochuan Luo³, Di Wu⁴, KrishnaTy Thulasiraman⁵, John N. Jiang¹
¹School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA; ²Eleon Energy Inc., Austin, TX, USA; ³ISO New England, Holyoke, MA, USA; ⁴North Dakota State University, ND, USA; ⁵School of Computer Science, University of Oklahoma, Norman, OK, USA; dhruv.sharma@ou.edu

Vector Surge and ROCOF Protection Algorithms for Distributed Generator Islanding Detection
Zdravko Matisić², Martin Boltek¹, Juraj George Havelka¹, Ante Marusic¹
¹Faculty of Electrical Engineering and Computing, Croatia; ²Sector for grid supervision and protection, HEP ODS d.o.o.; zdravko.matisic@hep.hr

Real Time Operation of Synchrophasor Data Functions in Transmission System Control Room
Igor Ivanković¹, Renata Rubeša¹, Igor Kuzle², Marko Rekić¹
¹Croatian Transmission System Operator (HOPS), Croatia; ²University of Zagreb; marko.rekic@hops.hr
An address-matching algorithm for household-scale databases to enhance electricity demand characterization

Antoine Rogeau¹, Robin Girard¹, Georges Kariniotakis¹, Nicolas Kong²
¹Centre for Processes, Renewable Energy and Energy Systems (PERSEE), Mines ParisTech, PSL University, France; ²Enedis, France;
antoine.rogeau@mines-paristech.fr

Multidimensional Smart Meter Data Analytics based on Sparse Representation Technique

Kedi Zheng, Yi Wang, Qixin Chen, Haiwang Zhong
Dept. Electrical Engineering, Tsinghua University, China, People's Republic of; zkd17@mails.tsinghua.edu.cn

Learning Uncertainty of Wind Speed Forecasting Using a Fuzzy Multiplexer of Gaussian Processes

Miltos Alamaniotis¹, Georgios Karagiannis²
¹University of Texas at San Antonio, United States of America; ²Durham University, United Kingdom; miltos.alamaniotis@utsa.edu

Evolutionary Load Morphing in Smart Power System Partitions Ensuring Privacy and Minimizing Cost

Miltos Alamaniotis, Nikolaos Gatsis
University of Texas at San Antonio, United States of America; miltos.alamaniotis@utsa.edu

Identification of Daily Patterns in Building Energy Consumption

Aulon Shabani, Ajakida Eski, Denis Panxhi, Orion Zavalani
Polytechnic University of Tirana, Albania; aulon.shabani@fie.upt.al

Extension of EMC equipment qualification test data with numerical calculations

Hrvoje Grganić¹, Davor Grgić²
¹Krško Nuclear Power Plant, Slovenia; ²Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia; hrvoje.grganic@fer.hr
Electric Circuit Foundation of Structural Analysis for Power Systems from a Network Perspective

Dhruv Sharma1, Guomin Ji1, Wanghao Fei1, Di Wu2, Paul Moses1, John N. Jiang1
1University of Oklahoma, OK, USA; 2North Dakota State University, ND, USA; dhruv.sharma@ou.edu

The Impact of Load’s Phase Shift Changes on the Electric Arc Behavior in Switching Process

Marinko Stojkov1, Tomislav Alinjak2, Kruno Trupinić2, Zvonimir Klaić3, Danijel Topić3, Tomislav Barić3, Mario Šipoš4, Hidajet Salkić5
1Mechanical engineering faculty Slavonski Brod; 2HEP ODS d.o.o. Elektra Slavonski Brod, Croatia; 3Faculty of Electrical Engineering, Computer Science and Information Technology; 4Croatian Armed Forces; 5PE Elektroprivreda BiH; mstojkov@sfsb.hr

Phase Shifters’ Impact in Reduced Network Models

Nuno Marinho1,2, Yannick Phulpin1, Adrien Atayi1, Martin Hennebel2
1EDF R&D, France; 2GeePs | Group of electrical engineering - Paris; nuno.marinho@edf.fr

Defining connection requirements for autonomous power systems

Pedro Beires1, Carlos Moreira1,2, João Abel Peças Lopes1,2, Agostinho Figueira3
1INESC TEC, Portugal; 2Faculty of Engineering, University of Porto, Portugal; 3EEM - Empresa de Electricidade da Madeira, Funchal, Portugal; ppbeires@inesctec.pt

Reliability criteria in power generation expansion planning

Goran Slipac1, Mladen Zeljko2
1HEP, Croatia; 2EIHP, Croatia; goran.slipac@hep.hr
SESSIONS

SES-22: Thursday 02 – Forecasting

On PMU-based real-time estimation of voltage stability and margin
Panagiotis Mandoulidis, Costas Vournas
National technical university of Athens, Greece; pmandou@power.ece.ntua.gr

Strategic Analysis of Demand-Side Responses on Transmission and Distribution Lines in Turkey
Yusra Merve Mendi, Hatice Kaya Güven
Enerjisa Energy DSO Company, Turkey; merve.mendi@enerjisa.com

The Forecast of Electricity Consumption Using SARMA model: Bosnia and Herzegovina Case Study
Ajla Mehinovic¹, Dzem Borovina¹, Matej Zajc², Miloš Pantoš², Nermin Suljanović³,⁴
¹JP Elektroprivreda BiH d.d - Sarajevo, Bosnia and Herzegovina; ²University of Ljubljana; ³Elektroinštitut Milan Vidmar; ⁴University of Tuzla; ajla.mehinovic@epbih.ba

Short-term photo voltaic power forecasting using cloud tracking methods
Alen Jakoplic¹, Dubravko Frankovic¹, Vedran Kirincic¹, Juraj George Havelka²
¹University of Rijeka, Faculty of Engineering, Department of Electric Power Systems; ²University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Energy and Power Systems; dubravko.frankovic@riteh.hr

An Experimental Forensic Test bed: Attack-based Digital Forensic Analysis of WAMPAC Applications
Asif Iqbal, Farhan Mahmood, Mathias Ekstedt
KTH, Sweden; asif.iqbal@ee.kth.se

Analysis of Possibilities of Alleviating Repercussions Caused by Large Disturbances in the EES
Robert Noskov¹, Ivica Petrović¹, Tomislav Barić², Hrvoje Glavaš², Damir Šljivac²
¹HOPS, Croatia; ²Faculty of Electrical Engineering, Computer Science and Information Technology Osijek; robert.noskov@hops.hr
SES-23: Thursday 03 – Data Driven Modelling II

Model Reduction of Coherent Clusters in Power Systems
Johnny Leung¹, Michel Kinnaert¹, Jean-Claude Maun³, Fortunato Villella²
¹Université libre de Bruxelles, Belgium; ²Elia Grid International, Belgium; ³johnny.leung@ulb.ac.be

Utilizing flexibility in Microgrids using Model Predictive Control
Frederik Banis, Niels Kjølstad-Poulsen, Henrik Madsen, Daniela Guericke
Technical University of Denmark, Denmark; freba@dtu.dk

Adaptive Clustering Method for Low-Voltage Electricity Customer Profiling
Susanna Mocci, Giuditta Pisano, Fabrizio Pilo, Matteo Troncia
University of Cagliari, Italy; matteo.troncia@diee.unica.it

Methodology for preparing basis in modeling long-term energy consumption in households
Vlatka Kos Grabar Robina, Alenka Kinderman Lončarević
Energy Institute Hrvoje Požar, Croatia; vrobina@eihp.hr

Analysis of energy consumption of buildings in Greece
Savvas Karras, Rebekka Gogou, Aris Dimeas, Nikos Hatziargyriou
National Technical University of Athens (NTUA), Greece; svkarras@power.ece.ntua.gr

Novel 2-D bifacial solar cell using large built-in internal electric fields: a p-i-n Structure simulation
Gady Golan
Ariel University and HIT; gadygolan@gmail.com
SESSIONS

SES-24: Thursday 04 – Operational aspects of power system Thursday, 15/Nov: 9:00am - 10:30am Location: Orlando

Incipient Equipment Failure Assessment and Avoidance through Robust Detection Technique
Rishabh Bhandia, Milos Cvetkovic, Jose de Jesus Chavez, Peter Palensky
Delft University of Technology, Netherlands, The; J.J.ChavezMuro@tudelft.nl

Improving the performance of HVDC system using Fuzzy-PI controller tuned by Linearized Biogeography-Based Optimization Algorithm
Mahmoud Mohamed Sayed, Tarek Abdelbadee Boghdady; Cairo University, Egypt; engtarek82@yahoo.com

Small-Signal Stability Analysis of Multi-Infeed VSC HVDC System under Different Reactive Power Control Strategies
Goran Grdenić1, Marko Delimar1, Jef Beerten2,3
1University of Zagreb Faculty of Electrical Engineering and Computing, Croatia; 2KU Leuven Department of Electrical Engineering, Belgium; 3Energyville, Genk, Belgium; goran.grdenic@fer.hr

Monthly scheduling with in the ecotourism microgrid considering the multi-energy losses
Iljia Batas Bijelić1, Koraljka Kovačević-Marinkov1,2, Nikola Rajaković1
1University of Belgrade, School of Electrical Engineering; 2Mixed Holding "Power Utility of the Republic of Srpska", Bosnia and Herzegovina; batas@etf.rs

The Impact of Wind Generator on Albanian Power System Transient Stability
Rajmonda Bualoti, Marialis Celoi, Marjela Qemali
Polytechnic University of Tirana, Albania; bualoti@icc-al.org

Outage Management – Unplanned Long Interruptions
Dubravko Balaško; HEP ODS, Croatia; dubravko.balasko@hep.hr

Chance-Constrained AC Optimal Power Flow Integrating HVDC Lines and Controllability
Andreas Venzke1, Lejla Halilbasic1, Adelie Barre1, Line Roald2, Spyros Chatzivasileiadis1
1Center for Electric Power and Energy, Technical University of Denmark, Kgs. Lyngby, Denmark; 2Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, USA; spchatz@elektro.dtu.dk
Modeling Electric Vehicle Consumption Profiles for Short-Term Forecasting and Long-Term Simulation
Alexis GERROSIER, Robin GIRARD, George KARIKINOTAKIS
MINES ParisTech, PSL University; alexis.gerossier@mines-paristech.fr

On the Emerging Role of Spatial Load Forecasting in Transmission/Distribution Grid Planning
Fabian HEYMAN, Joel David MELO TRUJILLO, Pablo Duenas Martinez, Filipe Joel Soares, Vladimir Miranda
1INESC TEC and University of Porto, Portugal; 2Federal University of ABC, Brazil; 3INESC TEC, Portugal; 4MIT, USA; fabian.heymann@fe.up.pt

Operation of a Wind-PV-Battery Hybrid Power Station in an Isolated Island Grid
Georgios PSARROS, Stavros Papatheos
National Technical University of Athens, Greece; gpsarros@mail.ntua.gr

A Case Study of Residential Electric Service Resiliency thru Renewable Energy Following Hurricane Maria
Agustin Irizarry Rivera, Karen Vanessa Montano Martinez, Sergio Ivan Alzate Drada, Fabio Andrade
University of Puerto Rico, Mayaguez, Puerto Rico (U.S.); agustin@ece.uprm.edu

Use of load flow analysis for planning the measures in sustainable energy action plans for the smart island energy systems development
Antun PFEIFER, Evangelos RIKOS, Christoforos PERAKIS, Goran KRAJACIC
1University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia; 2Department of PVs and Distributed Generation, Centre for Renewable Energy Sources and Saving; antun.pfeifer@fsb.hr

Proposed change of communication architecture with TCP/IP client-server architecture to protocols adapted for the Internet of Things communication through the LabVIEW environment
Anthea Štor, Franjo Tonkovic
1University of Zagreb, Faculty of electrical engineering and computing, Croatia; 2Veski Ltd; anthea.stor@fer.hr
26. **CROSSBOW** - Cross border management of variable renewable energies and storage units enabling a transnational wholesale market

 Monday, 12/Nov/2018 1:00pm - 2:30pm
 Location: Bobara

27. **BLOCKCHAINS** in the Energy Sector

 Monday, 12/Nov/2018 1:00pm - 2:30pm
 Location: Orlando

28. **FLEXCoop**: Democratizing the energy market through introduction of innovative demand response tools and novel business models

 Tuesday, 13/Nov/2018 1:00pm - 2:30pm
 Location: Bobara

29. **SIREN** — Smart Integration of RENewables

 Tuesday, 13/Nov/2018 1:00pm - 2:30pm
 Location: Orlando

30. **InteGRIDy** — Integrated Smart GRID Cross-Functional Solutions for Optimized Synergetic Energy Distribution, Utilization Storage Technologies

 Tuesday, 13/Nov/2018 3:00pm - 4:30pm
 Location: Bobara
SPECIAL SESSIONS

31. **FENISG** – Flexible Energy Nodes in Low Carbon Smart Grid;
WINDLIPS – WIND energy integration in Low Inertia Power System

Tuesday, 13/Nov/2018 3:00pm - 4:30pm Location: Orlando

32. **STORY** – The added value of storage in distribution systems

Thursday, 15/Nov/2018 1:00pm - 2:30pm Location: Bobara

33. **DER** – Distributed Energy Sources Control and the Use of Flexibility in Future System

Thursday, 15/Nov/2018 1:00pm - 2:30pm Location: Orlando

34. **THE GLOBAL GRID**

Thursday, 15/Nov/2018 3:00pm - 4:30pm Location: Bobara

35. **Round Table Session - The Future of Energy in Croatia**

Wednesday, 14/Nov/2018 2:00pm - 4:00pm Location: Bobara
POSTER SESSION

PS-01: Poster Session

Thursday, 15/Nov/2018: 3:00pm - 4:30pm

Location: Upper floor

1) Electro-mobility in Croatia
 Vanja Varda¹, Igor Kuzle²
 ¹HEP d.d., Croatia; ²University of Zagreb FER, Croatia; vanja.varda@hep.hr

2) Disturbance Accommodation Control of Wind Turbines Based on Sliding Mode Approach
 azita sharifi faskhodi, Ahmad Fakharian
 Qazvin Branch, Islamic Azad University; azita_sharifi@ymail.com

3) Croatian Power Market Design and Market Landscape
 Ivica Toljan, Marko Kelava
 CROATIAN POWER EXCHANGE Ltd., Croatia; ivica.toljan@cropex.hr

4) A Review of the Power Distribution System in the Telecommunications Sector
 Swagat Gogoi
 University of Petroleum and Energy Studies, India; swagat.gogoi1@gmail.com

5) Improving the Controller Performance for a Grid Connected Wind Farm
 Mahmoud Mohamed Sayed, Tarek Abdelbadee Boghdady, Omar Zahran
 Cairo University, Egypt; fecu.msayed@gmail.com

6) Model for defining the potential and value of flexibility services of multi-energy microgrids to low carbon power system operation
 Ninoslav Holjevac, Tomislav Capuder, Igor Kuzle
 University of Zagreb Faculty of Electrical Engineering and Computing, Croatia; ninoslav.holjevac@fer.hr
POSTER SESSION

PS-01: Poster Session Thursday, 15/Nov/2018: 3:00pm - 4:30pm Location: Upper floor

7) Integration of Electricity Generation from RES Supported by Feed in Tariff in an Organized Electricity Market
Aleksandra Krkoleva Mateska, Petar Krstevski, Vesna Borozan, Rubin Taleski
University Ss. Cyril and Methodius in Skopje, Faculty of Electrical Engineering and IT, Macedonia, Former Yugoslav Republic of; krkoleva@feit.ukim.edu.mk

8) A System Dynamics / Merit Order Pricing model for liberalized power system planning
A.S. Ibanez-Lopez, B.Y. Moratilla-Soria
Comillas Pontifical University, Spain; sibanez@sloan.mit.edu

9) A Comparative Analysis of Short Circuit Calculation Methods and Guidelines as Applied in The Kosovo Power System - Aspects and Specifics
Gazmend Xhevdet PULA¹, Kadri KADRIU², Gazmend KABASHI³, Bajram NESHATI⁴
¹ University of Prishtina, Electrical Engineering Faculty, Power Department, Kosovo; ² KOSTT, Kosovo Transmission and Market Operator, Prishtina, Kosovo; ³ KOSTT, Kosovo Transmission and Market Operator, 10 000 Prishtina, Kosovo; ⁴ KEDS, Kosovo Electricity Supply Company, 10 000 Prishtina, Kosovo; gazmend.pula@gmail.com
MEDPOWER2018 Special issue journals

MEDPOWER2018 conference provides an opportunity for all participants to publish a paper in a special issue with one or more of the partner journals. Only submissions that were presented at the Conference by one of the authors may be invited to a special issue.

The conference organizing committee will issue invitation letters to the best papers presented at the conference.

Manuscripts have to be submitted to the special issue of the journal according to instructions provided in the invitation letter (publishing guidelines, new material and extensions compared to conference paper etc.). Each manuscript will then be reviewed according to the journal policy.
Hotel Croatia General Map
VENUE INFORMATION

Hotel Croatia – Ground floor
VENUE INFORMATION

Hotel Croatia – Upper floor I
GENERAL INFORMATION

Registration Desk Hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, November 11th</td>
<td>16:00 – 23:00</td>
</tr>
<tr>
<td>Monday, November 12th</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Tuesday, November 13th</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Wednesday, November 14th</td>
<td>08:00 – 14:00</td>
</tr>
<tr>
<td>Thursday, November 15th</td>
<td>08:00 – 15:00</td>
</tr>
</tbody>
</table>

Name Badge
The admission to all conference sessions is by name badge only. Please be sure to wear your badge at all times.

Responsibility
The Organizing Committee assumes no responsibility for accident, losses, damage, delays, or any modifications to the program arising from unforeseen circumstances. It accepts no responsibility for travel or accommodation arrangements.

The participant acknowledges that he or she has no right to lodge damage claims against the Organizing Committee should the conference proceedings be hindered or prevented by unexpected political or economic events or generally by acts of God or should the non-appearance of speakers or other reasons necessitate program changes.

Internet Access
Wireless internet access is available in the hotel by choosing the 'hotelcroatia' network from your wireless options.

Conference venue & Accommodation
MEDPOWER 2018 conference will be held at the Croatia Hotel, Frankopanska 10, 20 210, Cavtat, Croatia.

T: +385 (0) 20 300 332
F: +385 (0) 20 300 329

If you arrive by plane, the Dubrovnik Airport is in Čilipi, only 5 km from the conference venue (Cavtat, Hotel Croatia). Situated on a peninsula that juts into the sea at the country’s southernmost point, the Croatia Hotel, in Cavtat, combines a stunning location in Cavtat and extensive facilities with easy access to the treasures of the Adriatic coast.
Transfer services
If you wish to schedule a transfer service to the airport or downtown Dubrovnik please let us know at the registration desk or email at:

Mail: medpower2018@concorda.com

Currency
The official currency in Croatia is the kuna (1 kuna = 100 lipa). Foreign currency can be exchanged in banks, exchange offices, post offices and in the majority of tourist information offices, hotels and campsites.

Credit cards (Eurocard / Mastercard, Visa, American Express and Diners) are accepted in almost all hotels, marinas, restaurants, shops and cash machines.

Climate
The areas along the Adriatic coast have a pleasantly mild Mediterranean climate with a large number of sunny days, summers are hot and dry and winters are mild and wet. The daily average temperatures in the Dubrovnik area in November are about 14°C, highs reaching up to above 20°C. You are very likely to experience dry and warm weather during your stay. The average sea temperature in June is around 19-20°C.

Emergency Telephone Numbers
Emergency – Police, Ambulance, and Fire: 112

This number can be reached any time, day or night, regardless of where you are in the Republic of Croatia.

Calls to this number are free of charge.

 Calls can be made through all operators and all telephone devices by dialing 112.

Lost and found
All materials lost or found in the auditoriums are brought to the Registration Desk located in the main lobby of the hotel.

Parking
Hotel provides parking for all its guests.
GENERAL INFORMATION

Working hours of shops

All the year round, the majority of the shops are open from Monday to Saturday from 8.00 am to 8.00 pm. In summer, the majority of the shops are open till 9.00 pm, while the shops in the Old City, particularly souvenir shops, are open till the late-night hours.

The majority of the shops are closed on Sundays and on holidays, with the exception of souvenir shops and some other shops in the Old City, which are open on Sundays and on holidays in summer.

The Gruž open-air market is open in the morning, while the flower stands remain open till the afternoon. The open-air market in the Old City is closed at noon.

For all touristic information please visit: http://visit.cavtat-konavle.com/en

Presentation Guidelines

All MEDPOWER 2018 accepted papers must be presented and discussed in person at the conference. Therefore, final acceptance of the paper and its inclusion into the conference proceedings is subject to confirmation of registration of at least one of the Authors and presentation of the paper by them at the conference.

The conference program and the presentation schedule will be available from October 15th, 2018.

IMPORTANT INFORMATION FOR PRESENTERS:

- Each paper has a slot of approximately 15 minutes including presentation and discussion. Therefore, presentations should be planned to last no more than 12-13 minutes so that there is time for a short discussion.
- Presenters are kindly requested to be in the room for which their presentation has been scheduled at least 15 minutes before the start of the session to transfer their respective presentation to the Conference laptops.
- There is no set PPT or PPTX template that presenters need to use.
- The provided template on conference website can be used if authors wish that
GENERAL INFORMATION

Welcome Reception
Monday, November 12, 19:00 – 22:00
Hotel Croatia – hotel upper floor and terrace
Reception with snacks and drinks

The MEDPOWER 2018 Welcome Reception will be held at the Restaurant at the Croatia Hotel. The Croatia Hotel is in an exceptionally beautiful and secluded location on a peninsula overlooking the Adriatic on one side and the picturesque historic quarter of Cavtat on the other.

This will be a perfect setting for delegates, students and companions to enjoy a social evening of food, drinks, and conversation.

The world-famous medieval walled city of Dubrovnik can be seen from some hotel terraces.

Gala Dinner
Tuesday, November 13, 19:00 – 22:00
Hotel Croatia – Restaurant Cavtat

The gala dinner at the restaurant Cavtat (Hotel Croatia) is the conference formal dinner.
GENERAL INFORMATION

Excursion
Allocated time: Wednesday, November 14, 13:00 – 20:00

Various tourist excursions will be offered at the Conference site.

Organized transfer to the Dubrovnik by bus where we meet with local guide in the Old town.

Walking City tour with guide that finishes with a walk on the city walls, where you will have a chance to get an overview of this fascinating quarter of the town and to savor the parts of the city you have explored from a different perspective.

Price per person: 60,00 EUR

Price includes:
- Bus transfer from Hotel Croatia, Cavtat to Dubrovnik
- Return transfer from Dubrovnik to the Hotel Croatia, Cavtat
- One licensed tour guide per group (25 persons)
- Entrance to the City Walls
Author Index

A
Abdul Rahman, Shahnurriman
Agbemuko, Adedotun Jeremiah
Al Aqil, Mohammed
Abdulaziz
Al-Agtash, Salem
Iacredu, Lola
Alam, Abu
Alamaniotis, Miltos
Alberdi, Rafael
Albizu, Igor
Ali, Jibran
Ali, Zunaib
Alinjak, Tomislav
Alzate Drada, Sergio Ivan
Amaldi, Edoardo
Anastasiou, Athanasios
Andrade, Fabio
Andročec, Ivan
Ansari, Shoaib
Antonijevic, Miro
Antunes, Carlos Henggeler
Asimakopoulou, Georgia
Atayi, Adrien
Aydin, Zafer
Azzopardi, Brian
B
Baba, K.V.S
Babazadeh, Davood
Bagriyanik, Mustafa
Bakhoum, Sami
Bakirtzis, Anastasios
Balaško, Dubravko
Banis, Frederik
Banovac, Eraldo
Barbosa, Antonio
Barić, Tomislav
Bariša, Tin
Barre, Adelie
Batas Bijelić, Ilija
Baškarad, Tomislav
Bedialauneta, Miren T.
Beerten, Jef
Beires, Pedro
Bell, Keith
Benčik, Vesna
Bendrat, Florian
Berger, Mathias
Berizzi, Alberto
Bhandia, Rishabh
Bilić, Tena
Bintoudi, Angelina D.
Bischi, Aldo
Biskas, Pandelis
Blanas, Orestis
Boghdady, Tarek
Abdelbadee
Bolfeke, Martin
Bood, Hanna
Borg, Nicholas
Borovina, Dzemo
Borozan, Vesna
Bovo, Cristian
Breslin, John G.
Brezovec, Miljenko
Bruninx, Kenneth
Bualoti, Rajmonda
Camacho, Antonio
Cantenot, Jérôme
Cantos-Alcantara, Gabriel
Capitanescu, Florin
Capuder, Tomislav
Carriere, Thomas
Carrión, Miguel
Carvalho, Leonel
Magalhães
Castilla, Miguel
Castro, Manuel Vaz
Celo, Marialis
Chatzigiannis, Dimitris
Chatzivasileiadis, Spyros
Chavez, Jose de Jesus
Chazarra, Manuel
Chen, Qixin
Chhor, Johnny
Christofides, Nicholas
Cipcigan, Liana
Coelho, António
Correa-Florez, Carlos Adrian
Costa tavares, Bruna Daniela
Costa, Hélder Couto, Mário
Cvekovic, Milos Cvetkovic, Milos
Čevapović, Helena Čukman, Marko

De Vivero Serrano, Gustavo Debrecin, Nenad Delikaraoglou, Stefanos Delimar, Marko Demetriou, Panayiotis Demoulias, Charis Deschuyteneer, Thierry Detienne, Ghislain Dias, André Dimeas, Aris Djapic, Predrag Dokic, Tatjana Dominguez-Garcia, Jose Luis Donnot, Benjamin Doorman, Gerard Du, Pengwei Duenas Martínez, Pablo Dueñas Martínez, Pablo Dumnic, Boris

Hayes, Barry P.
Hennebel, Martin
Herencšić, Lin
Heymann, Fabian
Hlupić, Nikica
Holbøll, Joachim
Holjevac, Ninoslav
Hoxha, Neriton
Huang, Wujing
Hug, Gabriela
Håberg, Martin

Kabashi, Gazmend
Kadriu, Kadri
Kamenschikow, Dmitrij
Kang, Chongqing
Karaotis, Panagiotis A.
Karađišanić, Georgios
Karakitsios, Ioannis
Kariniotakis, Georges
Karras, Savvas
Kaya Güven, Hatice
Kekelj, Ana
Keko, Hrvoje
Kelava, Marko
Kerdphol, Thongchart
Kezunovic, Mladen
Khalaf, Saad
Khiat, Mounir
Kilter, Jako
Kinderman Lončarević, Alenka
Kinnaert, Michel
Kipke, Vile
Kirincic, Vedran
Kjolstad-Poulsen, Niels
Klaič, Zvonimir
Knežević, Goran
Knittel, Markus
Kong, Nicolas
Kopsidas, Konstantinos
Kos Grabar Robina, Vlatka
Kourasi, Maria
Kouveliotis Lysikatos, Iasonas
Kovačević-Markov, Koraljka
Krajacic, Goran
Krajcic, Slavko
Krajinski, Philip

Krkoleva Mateska, Aleksandra
Krpan, Matej
Krstevski, Petar
Kucuk, Unal
Kusljugic, Mirza
Kuzle, Igor
Kvammen, Mads-Emil
Kyriacou, Alexis
Kyriakides, Elias

L
Lambert, Eric
Laurent, Vincent
Lazzari, Riccardo
Leinhoff, Sebastian
Leinakse, Madis
LeouTre, Eric
Leung, Johnny
Lin, Chenxi
Liu, Yilu
Liu, Yongqian
Lopes, Marta
Lopes, Mário
Luburić, Zora
Luo, Xiaochuan
Luther, Matthias
López, Claudio David

M
Madsen, Henrik
Madureira, André
Mahmood, Farhan
Mahmoud, Haitham
Mandić, Niko
Mandoulidis, Panagiotis
Manuel de Villena, Miguel
Marano-Marcolini, Alejandro
Marinho, Nuno
Markopoulos, Petros
Marneris, Ilias
Marot, Antoine
Martensen, Nis
Martínez-Ramos, Jose L.
Martínez-Ramos, José Luis
Marusic, Ante
Marušić, Anton
Massmann, Janek
Massucco, Stefano
Matisic, Zdravko
Maun, Jean-Claude
Mazon, A. Javier
Mehinovic, Ajla
Melo Trujillo, Joel David
Mendi, Yusra Merve
Michiorri, Andrea
Milanović, Jovica
Miletić, Marija
Milicevic, Dragan
Miranda, Vladimiro
Miret, Jaume
Mitani, Yasunori
Mocci, Susanna
Montano Martinez, Karen Vanessa
Morais, Hugo
Moratilla-Soria, B.Y.
Moreira, Carlos Leal
Moreira, Roberto
Moses, Paul
Mougeot, Mathilde
Mujcic, Aljo
Nallarasan, N.
Narasimhan, S.R.
Neirac, François-Pascal
Neyestani, Nilufar
Neshati, Bajram
Nofuentes, Álvaro
Noskov, Robert
O Malley, Conor
Oh, HyungSeon
Oliveira, Andressa Pereira
Omerdic, Emir
Onen, Ahmet
Osmic, Jakub
Ozdemir, Aydogan
Palensky, Peter
Panayiotou, Christos
Panciatici, Patrick
Pandžić, Hrvoje
Pantoš, Miloš
Panxhi, Denis
Papadaskalopoulos, Dimitrios
Papadopoulos, Panagiotis
Papalexopoulos, Alex
Papathanassiou, Stavros
Papić, Dijana
Papić, Ivan
Pavić, Ivica
Pavlović, Darko
Peharda, Domagoj
Pelin, Denis
Pellegrino, Luigi
Perakis, Christoforos
Pérez-Díaz, Juan I
Petrelli, Marina
Petrović, Ivica
Peças Lopes, João Abel
Pfeifer, Antun
Phulpin, Yannick
Phunpeng, Veena
Picanco, Alessandra Freitas
Pilo, Fabrizio
Pinson, Pierre
Pinto, Diogo
Pisano, Giuditta
Pitaval, Sebastien
Poapdic, Bane
Polycarpou, Alexis
Portela, João Carlos
Poyrazoglu, Gokturk
Pozo, David
Pravica, Luka
Primorac, Mario
Psarros, Georgios
Pudić, Dalibor
Pudjianto, Danny
Pula, Gazmend Xhevdet
Qemali, Marjela
R
Radu, David
Raicevic, Nebojsa
Rajaković, Nikola
Rajan, Muthu Kumar
Rajšl, Ivan
Raos, Sara
Rehman, Sami
Rekić, Marko
Rikos, Evangelos
Roald, Line
Roald, Line
Robina, Tomislav
Rogeaou, Antoine
Rubeša, Renata

S
Sabapathy, Aswin Kumar
Saifur Rahman, Fathin
Salkić, Hidajet
Sandroni, Carlo
Santos, Rafael Bastos
Saraiva, João Tomé
Sarri, Styliani
Sayed, Mahmoud Mohamed
Schillemans, Arthur
Schnetler, Armin
Secic, Adnan
Serrano, Manuel
Shabani, Aulon
Shahid, Ahsan
Shalaby, Mohamed sharifi faskhodi, azita
Sharma, Dhruv
Shukla, Rahul
Sicanica, Zlatan
Silva, João M.
Silvestro, Federico
Simões, Micael
Skok, Minea
Slipac, Goran
Soares, Filipe Joel
Sourkounis, Constantinos
Souvent, Andrej
Sperstad, Iver Bakken
Spichartz, Benedikt
Stojkov, Marinko
Strbac, Goran
Sucic, Stjepan
Suljanovic, Nermin
Suljanovic, Nermin
Suljanović, Nermin
Sumina, Damir
Šadek, Siniša
Šipoš, Mario
Šljivac, Damir
Štor, Anthea
Švarc, Renata

T
Taleski, Rubin
Taylor, Gareth
Taylor, Joshua
Tazi, Sami
Teng, Fei
Thakur, Subhas
Thulasiraman, Krishnaiya
Till, Jeremy
Toal, Daniel
Toljan, Ivica
Tonello, Andrea
Tonković, Franjo
Topić, Danijel
Trbalić, Amir
Troncia, Matteo
Trullenque, Ghislain
Trupinić, Kruno
Tsolakis, Apostolos C.
Tusun, Stjepan
Tzovaras, Dimitrios

U
Varda, Vanja
Vayatis, Nicolas
Veerashekhar, Kishan
Venzke, Andreas
Verga, Maurizio
Vernay, Christophe
Viafora, Nicola
Villella, Fortunato
Vlahović, Štefica
Vournas, Costas
Vrana, Til Kristian
Vrazic, Mario
Vukajlovic, Nikola

W
Wang, Yi
Wolter, Martin
Wu, Di

X

Y
Yang, Christine
You, Shutang

Z
Zahran, Omar
Zajc, Matej
Zavalani, Orion
Zbunjak, Zoran
Zehir, Mustafa Alparslan
Zeljko, Mladen
Zhang, Ning
Zheng, Kedi
Zhong, Haiwang
Zhu, Yue
Zmijarević, Zlatko
Zygglakis, Lampros M.
Zárate-Miñano, Rafael
Žiger, Igor
Analysis of possibilities of alleviating repercussions caused by large disturbances in the power system

Robert Noskov
Croatian Transmission System Operator Ltd.
HOPS, Osijek
Osijek, Croatia

Ivica Petrović
Croatian Transmission System Operator Ltd.
HOPS, Osijek
Osijek, Croatia

Hrvoje Glavaš
Faculty of Electrical Engineering, Computer Science and Information Technology Osijek
FERIT
Osijek, Croatia

Damir Šljivac
Faculty of Electrical Engineering, Computer Science and Information Technology Osijek
FERIT
Osijek, Croatia

Tomislav Barić
Faculty of Electrical Engineering, Computer Science and Information Technology Osijek
FERIT
Osijek, Croatia

Abstract - Various EU regulations have established rules for accessing the electricity exchange grid in order to ensure proper functioning of the electricity market while maintaining a proper level of system security. System security depends on the technical capabilities of its components to withstand disturbances and to help prevent serious interruptions or to re-establish system operation after a breakdown occurs.

At the center of the analysis are the transformer voltage regulation, the possibility of overloading the network element, the effects of blocking the regulator and the usefulness of the above on the safety of the power system.

This paper generally gives a theoretical and practical overview of measures for the automated protection against voltage disruption and reduction of the active or reactive load of lines or transformers in the subsystem PrP Osijek. For this purpose, the possibility of using different protection and automation devices will be analyzed to preserve the basic contour of the transmission grid in order to quickly establish consumer power supply and normal system operation.

In addition to automatic protection, measures of excluding certain elements of the grid will be shown, as well as functions for blocking/activating the regulation of grid elements in order to reduce active and reactive loads of lines or transformers.

The analysis gives the effect of some measurements on a real transmission grid model. The model had to be adjusted with the grid state and load requirements that anticipated various unfavorable scenarios, which could cause the power system to break down.

Keywords— EES; automated protection; disturbances

1. INTRODUCTION

Various norms and regulations have set the power system operating rules, which include requirements for ensuring system security in operation and real-time prediction of disturbances. It is therefore important to foresee a number of procedures and measures that need to be implemented in a state of emergency.

Primary management of drive safety and safe and efficient operation of the entire power system is vital for the system operation. Therefore, the transmission system operator is responsible for maintaining drive safety in its area, and for safe and efficient operation of the entire power system. It then has to apply measures and procedures that will stop further system endangering and ultimately increase system security[7].
II. THEORETICAL ASPECTS

The main purpose of the defense of the power system from large disturbances is to ensure the prevention of disruption of the power system operation, or if the disruption occurs, it is necessary to return to the normal operating state as quickly as possible.

At different drive states, which the system reaches during exploitation, changes in different system variables, primarily changes of current, voltage, and frequency [1] are constantly occurring. Outside the normal drive state, the given variables may exceed their permissible values, which are very important for proper functioning of the system. Figure 1 shows the characteristic variables of a disturbed drive.

Figure 1. Display of characteristic variables and their value ranges for a disturbed drive

For variables that exceed permitted ranges, it is necessary to take certain actions and bring them, as soon as possible, to their normal drive values. Some of the measures can only be effective if applied in the shortest time possible. This can only be achieved with the application of automatic protection measures and procedures. One of the most important measures is the automatic protection from voltage breakdowns.

III. OPERATING DRIVES OF THE POWER SYSTEM AND THE DISTURBED DRIVE

Regarding the fulfillment or non-fulfillment of the safety criteria by ENTSOE, the following operating conditions of the power system are defined[6]:

- normal drive
- endangered normal drive
- disturbed drive
- system breakdown
- establishment of normal drive

The transmission system is in a disturbed drive if at least one of the following conditions is met[8]:

- there is a distortion of the limit values of voltages or power currents specified for normal or endangered normal drive,
- total short-circuit current in one the network hub is larger than the switching current at least one circuit breaker in that junction
- the frequency does not meet the criteria for normal nor endangered normal drive
- there is a malfunction of one of the following tools, ways and features:
 - possibilities for monitoring the transmission system state, including status estimation applications and options for secondary frequency regulation and power exchange control
 - controlling the system via circuit breaker operation in the bus coupler bay, operation of transformer tap changers, and other equipment used to control the transmission system elements
 - communication with the dispatch centers of other TSOs and the regional safety coordinator for safety management tools
 - tools and communication methods that the transmission system operator needs to facilitate cross-border balancing and regulating energy market operations for which these tools, modes and features are unavailable for more than 30 minutes.

IV. EXAMPLES OF POWER GRID CHANGES IN REAL TIME

In a real power grid, an example of a real event and the possibility of applying disturbance alleviation measures in the part of the Croatian power system that was affected by a major disorder was considered and illustrated in Figure 2. The system characteristics are such that the area has two main power points in TS Ernestinovo and TS Đakovo and several 110 kV power lines.

Figure 2. A section of the system affected by the disorder

IV.I. Analysis of power system state before and after the event, description of cause and sequence of events

In the first case, the busbar protection tripped both 110 kV bus systems, and the initial cause of the event was a thunderstorm, where the bus remained powered only via 110 kV network. The remaining part of the network is powered via a long 110 kV corridor and one 220/110 kV transformer.
Immediately after the failure and the occurrence of a major disturbance in the system, short-term stationary state was established and there was no overload of the network elements at that time. In some nodes, very low voltages appeared, but there were no other faults and limitations in power system. During the disturbance, there are several violations of the current limit values, i.e. the overload of the network elements and the voltage outside the normal operating range caused the state of the disturbed drive. Figure 3 shows the voltage and current at TR 220/110 kV during the event.

![Figure 3. Voltage and current display at TR 220/110 kV during the event](image1)

Immediately after the event, the transformer 220/110 kV that supplied most of the consumption of the transmission network was not overloaded and the tap changer was in position 11. With the automatic control activated, the set nominal voltage value is maintained and the tap reaches the position 18 to reach the set voltage value as shown in Figure 4.

![Figure 4. Display of position change of the tap changer and the respective voltage change over time](image2)

From this, it can be concluded that, the automatic voltage control attempted to raise the voltage value to the set amount, but an unwanted transformer load was reached. At the same time, it was not desirable to do so by respecting the permissible load of the transformer.

If there were a possibility of automatic blocking of the voltage regulation, the desired value of load of the network element would be reached, as shown in Figure 6.

![Figure 5. Display of current change on TR 220/110 kV and position of the tap and the respective voltage](image3)

In the second case, the initial cause of the event is the trip of the busbar protection caused by the bus failure in the 400 kV system and the tripping of both bus systems. The remaining part of the network, due to failures or maintenance, is powered by a long 110 kV corridor, one 220 kV transmission line from neighboring BiH, and one transformer 220/110 kV. Therefore, we already have a case of relatively high loads that are powered from distant points. Immediately after the failure and the occurrence of a major disturbance in the system, short-term stationary state was established and there was no overload of the network elements at that time. In some nodes, very low voltages appeared, but there were no other faults and limitations in the power system. In such a state, consumption was maintained and for a short time, it was powered by over 220 kV transmission line.

What is important to note here is that the high voltage value on the transformer initiated the change of the transformer tap position to a higher and higher value of 110 kV voltage. Because of the increase in the position of the tap, the load was increased with the reactive power of the 220 kV connected line,
causing its overload. Figure 7 shows the change in reactive power and transformer tap position change.

Figure 7. Transformer tap position change and changes of the reactive power of the transmission line

Increase in the reactive load of a line or transformer caused by moving the tap changer to a higher pre-set value has led to an increase in current on the same elements, as shown in Figure 8.

Figure 8. Dependency of the transformer tap position and current change on the transmission line

From the above-mentioned analysis of the event, it is shown that the change of the position of the voltage regulator overlaps to a higher value, and thus caused a higher voltage value on the busbar systems. If the voltage regulation was blocked, as shown in Figure 9, there would be no increase in the load on the network elements.

Figure 9. Display of voltage and load changes in the blocked voltage regulation state for both events

It is apparent that, as with the first event, the increase of current on any element of the network can lead to the overcurrent protection trip and the possibility of cascading system breakdown. From the Figure 6 and Figure 9 it is shown that in both cases, by blocking the transformer tap changer or by blocking the voltage regulation, there would not be an increase in the load on the network element, and thus the security of the system would be maintained. Theoretical analyzes and these cases show that there are a number of measures and procedures that would contribute to improving the state and maintaining the security in the system [2].

V. DISPLAY OF POSSIBILITIES OF ACTIONS FOR MAINTAINING SYSTEM STABILITY

From the above-mentioned analysis of events, in this case it is concluded that a range of measures that would contribute to improving the situation and increasing system security can be implemented.

A major disturbance is a condition in a system characterized by the existence of a distortion in the limit values of important variables in the power system. If this condition persists or becomes worse, partial or complete disintegration of the system may occur. Because of all this, it is necessary to act timely and prevent network disruption [9].

Of course, it is important to emphasize that each operating moment is specific to topology, transit flows, consumption and production. For this reason, the proposed motion is to determine the right course of actions necessary to the specific operating state.

These actions, suggestions for technical improvements and corrective measures that may contribute to the elimination of security threats and partial or full of the system breakdown can be summarized as follows [3]:

- Automatic circuit breaker trip of the reactor bay in the 400/110 kV hubs when the following conditions are met:
 - voltage on both 110 kV bus systems << 90 kV with 30 second time delay or
o voltage on both 400 kV bus systems << 360 kV with 30 second delay or
do disconnection of one or both TR 400/110 kV in the critical hub;

- Automatic circuit breaker closing in the capacitor bay at the set busbar voltage value and in the set time spent under conditions:
o voltage on both 110 kV bus systems << 90 kV with a 30-second time delay.

- Blocking the automatic voltage regulation on network transformers 220 / 110kV and 400/110 kV to prevent load increase due to higher reactive power under conditions:
o voltage on all 110 kV bus systems << 99kV with a 30 second time delay
o the central / group unblocking of the voltage regulators of all network transformers via the SCADA system must be enabled.

- Blocking the voltage regulation on 110 / x kV transformers to prevent load increase due to higher reactive power (central or group) under conditions:
o voltage on all 110 kV bus systems << 99kV with a 30 second time delay,
o the central / group unblocking of the voltage regulators of all network transformers via the SCADA system must be enabled.

- By selecting manual voltage control and setting the voltage control to a lower value to reduce reactive power flows and total load through critical network elements;

- By topological partitioning of network components by switching off some of the lines and corridors to reduce the load on the critical elements of the network,

- By re dispatching production in the power system,

- By manually disassembling parts of the consumption by switching the selected TR 110/35 kV off to assure unburdening of the network;

- By automatic, group or individual unburdening of the power systems part according to selected and pre-defined nodes of the network for the purpose of preserving the power system;

- By creating scenarios for dealing with similar potential disorders or threatening states in the future,

- By performing theoretical and practical training of the operating personnel on the training simulator;

In all analyzes of an event that is characterized by voltage disruption in a 110 kV network, a considerable load or overload of the network element due to the lack of time needed for problem analysis and adequate response of the operator is indicated, and the need for an adequate automation and protection in the network is certain.

All these measures contribute to prevent system endangerment, faster recovery back to normal operation, and increased system security. All these corrective measures and each one separately would contribute to preventing system malfunctions, further endangering the system, and increasing system security [5].

VI. SUMMARY

In most European transmission systems there is not enough equipment to automatically compensate reactive power and for voltage regulation. This disadvantage is particularly expressed for major disorders in the power system, when operating personnel are not able to observe, identify and initiate corrective measures for the sake of preserving the already disturbed state in the system. Therefore, for each system, it is necessary to design, consider and apply a set of predefined automatic protection measures designed to preserve the basic contour of the system and to prevent the system from being further compromised.

Some of them are listed as measures that would particularly contribute to preventing the disruption of a part of the system in this considered example. Additionally, a general overview of all other measures that should be such as to operate on voltage and reactive power regulation or on power flows in a way that will stop the negative changes that can cause a power outage or complete disruption of the power system.

Determining a number of measures and procedures as rapid activity in the event of a disorder is extremely useful as it is necessary to be prepared before the occurrence of the disorder. This would greatly prevent the occurrence of a disturbed drive, and if it does occur, then it will quickly and easily return to the normal operating state of the system.

VII. LITERATURE

[1] COMMISION REGULATION (EU) 2017/2196 from 24.11.2017, on establishing a network code for a disturbed network drive and system re-establishment;

[3] Precaution plan for large disturbances in the power system brane, Intern HOPS document, 2018;

Certificate of Attendance

This is to certify that

Ivica Petrović

has participated at the

MEDPOWER2018

Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion

12-15 Nov, Dubrovnik, Croatia

Dubrovnik, Croatia
12 - 15 November 2018

Prof. Igor Kuzle,
Conference chair
Certificate for Presenting Authors

This is to certify that

Ivica Petrović

from the

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

has presented paper on the MEDPOWER 2018 Conference

Dubrovnik, Croatia
12 - 15 November 2018

MEDPOWER2018 Conference is supported by