Genetic structure and hybridization risk assessment for the wildcat (Felis silvestris silvestris) population in Croatia

Tomislav Vladišić¹, Lucija Jaša-Sangulin², Petra Lindić², Ana Bielen³, Reno Hraščan³, Marijana Perišić Salihović², Goran Gužvica³, Lidija Šver³

¹ Laboratory for Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, University of Zagreb, Kačićeva 23, Zagreb, Croatia
² Institute for Anthropological Research, Ljudevića Gaja 32, Zagreb, Croatia
³ Oikon Ltd.- Institute for Applied Ecology, Trg senjskih uskoka 1-2, Zagreb, Croatia

INTRODUCTION
• European wildcat (Felis silvestris silvestris Schreber, 1777) is the least studied strictly protected wild carnivore in Croatia
• Genomic purity of European wildcat population is threatened due to frequent hybridization with domestic cats

AIM
• To determine the level of hybridization between wild and domestic cats in Croatia by analyzing 12 microsatellite loci

MATERIALS AND METHODS
• 63 samples: muscle, blood and oral mucosa; 25 wild and 38 domestic cats were preliminary identified based on morphology. The two subspecies cannot be always clearly determined based on external morphology, so genetic testing is necessary to provide for accurate population assignment.
• After DNA extraction, microsatellite loci were amplified using multiplex touchdown PCR and analyzed by capillary electrophoresis
• Population structure was assessed using Bayesian clustering implemented in STRUCTURE 2.3.4 and CLUMPAK, and the genetic variability of each population was analyzed using Arlequin 3.5.2.2, GenAlEx 6.5 and Fstatt 2.9.3.2.

RESULTS
• Population assignment has identified 21 wildcats and 37 domestic cats (Fig. 1). Two individuals initially identified as wildcats proved to be domestic (cut-off value, qi≥0.9), and 3 domestic × wildcat hybrids have been detected. Hybrid ratio in the sampled wildcats population is 8.70%, and 2.63% in domestic cats population, 4.92% of all samples, respectively. Misidentified and hybrid individuals were excluded from further population genetics analyses.

• Pairwise diversity assessment between wildcat and domestic cat populations showed genetic distance index Fst=0.12, inbreeding coefficient Fis=0.141, overall inbreeding coefficient Fin=0.244, Nei’s genetic identity I=0.472 and Nei’s genetic distance -log10=0.75. Molecular variability (AMOVA) data are given in Fig. 2. For each subspecies, genetic diversity data are given in Table 1.

CONCLUSIONS
Wildcats in Croatia represent a genetically distinct population with a moderate incidence of both hybridization with domestic cat and inbreeding (Figs. 1, 3, 4). Domestic cat population showed greater allelic variability but also larger inbreeding, as well as existence of distinct genetic subpopulations (Fig. 4). Like elsewhere in Europe, habitat loss presents a risk for criptic extinction of wildcats.

Table 1: Genetic diversity data.

<table>
<thead>
<tr>
<th>population</th>
<th>domestic</th>
<th>wildcat</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample size</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td>Ns</td>
<td>9.58</td>
<td>7.83</td>
</tr>
<tr>
<td>Nr</td>
<td>3.417</td>
<td>1.66</td>
</tr>
<tr>
<td>Ho</td>
<td>0.665</td>
<td>0.705</td>
</tr>
<tr>
<td>Hs</td>
<td>0.767</td>
<td>0.759</td>
</tr>
<tr>
<td>Fst</td>
<td>0.146</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Figure 1: Bayesian clustering results (K=2). Probability of population assignment: q1 - wild cats; q2 - domestic cats. ▼ - hybrids (0.15qi≥0.9)

Figure 4: Bayesian clustering (K=4). Four subpopulations detected: 1 - wildcats; 2 – 4 - domestic cats ▼ - hybrids are classified into the clusters with the most similarity

Figure 2: AMOVA molecular variance analysis

Figure 3: PCoA analysis. Populations of wild cats, domestic cats and wild × domestic hybrids clearly identified.

REFERENCES