Comparison of physical properties of White Poplar and clone 'Villafranca' wood

Sedlar, Tomislav¹; Sinković, Tomislav¹; Šefc, Bogoslav¹*; Jambreković, Branimir¹; Stojnić, Srđan²; Ištok, Iva¹
¹ Wood Technology Department, Faculty of Forestry, University of Zagreb, Zagreb, Croatia
² Institute of Lowland Forestry and Environment, Novi Sad, Serbia.
*Corresponding author: bsefc@sumfak.hr

ABSTRACT

Differences between plantation grown and natural poplars are a subject of limited number of investigations. Acquiring genotypes of forest trees with properties better than the existing is the main aim of the breeding application. Another important goal is the increase in wood quality. In this article, preliminary results on physical properties of white poplar and clone 'Villafranca' wood are presented. Five representative trees of both origin were collected. The site is located near the city of Varaždin in Republic of Croatia, within Varaždin Podravina forests. The investigations were carried out using segments with north and south orientation in the wood at the breast height of each tree. The results of average values indicate there is a significant difference in wood density, longitudinal, tangential, radial and volume shrinkage and maximal moisture content between white poplar and clone 'Villafranca' wood. For a better prediction of white poplar and clone 'Villafranca' wood quality further research on mechanical properties is needed.

Key words: Physical properties, clone 'Villafranca', white poplar

1. INTRODUCTION

Global poplar resources are rapidly increasing in the last few decades, due to increasing demand for raw material. Poplar wood provides numerous product options, ranging from lumber to veneer, plywood and composites as wood-based products, as well as pulp and paper as fiber-based products. It is well known that different end uses require certain wood characteristics (Zhang et al., 1997).

Wood density is considered to be one of the most important factor affecting wood quality (Zobel and van Buijtenen, 1989). It is strongly related to other wood properties, such as mechanical strength (Panshin and de Zeeuw 1980). Poplar wood has low density similar to that of softwoods, but with high strength values related to their limited density (Isebrands and Richardson, 2014).

The best known within-tree variability in wood is the change from the pith to the bark. The low density, diffuse-porous woods, such as Populus, seem to have a somewhat higher density at the pith (Zobel and van Buijtenen, 1989).

So far, research has been carried out on anatomical, physical and mechanical properties of white poplar wood (Populus alba L.) in Croatia (Horvat, 1960; Ištok et al., 2017; Sinković et al., 2017; Ištok et al., 2018; Sedlar et al., 2018).

The capacity of white poplar to grow in a wide range of soils and to propagate easily contributes highly to its cultivation (Ištok et al., 2017). For that reason, existing data on its wood properties should be completed. The area of Varaždin and Međimurje or north-western part of Croatia has a lot of land that can be used for growing poplar or poplar clones. For developing poplar clones, it is important to create a database on physical and mechanical properties of white poplar from the natural stands (Šefc, 2009; Ištok et al., 2016).

Aim of this study was to investigate physical properties of clone 'Villafranca' wood and compare them with physical properties of white poplar wood.
2. MATERIAL AND METHODS

For the purpose of this research, five representative trees of white poplar and clone 'Villafranca' were taken from Varaždin podravina forests, department 3a (Figure 1). The test trees were chosen as representative of the stand according to HRN ISO 3129:2015.

![Figure 1. Map of the location the test trees (Source: Ištok, 2016)](image)

The test trees were chosen as the best represent of the stand with their age, size, habitus, dendrometric elements and outer trunk properties. They were healthy, normal, with regular crowns, straight stems, average flawlessness and fullness of bole, as well as grain texture (Tables 1 and 2).

Table 1. Basic data on White poplar trees

<table>
<thead>
<tr>
<th>Number of test trees</th>
<th>Height of the tree (m)</th>
<th>Height to the first thick branch (m)</th>
<th>Diameter on breast height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>16</td>
<td>7.5</td>
<td>50.5</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>29</td>
<td>14.3</td>
<td>8</td>
<td>41</td>
</tr>
<tr>
<td>30</td>
<td>14.1</td>
<td>8.2</td>
<td>44.5</td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>7.3</td>
<td>39.2</td>
</tr>
</tbody>
</table>

Table 2. Basic data on clone Villafranca trees

<table>
<thead>
<tr>
<th>Number of test trees</th>
<th>Height of the tree (m)</th>
<th>Height to the first thick branch (m)</th>
<th>Diameter on breast height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>21.4</td>
<td>2</td>
<td>30.5</td>
</tr>
<tr>
<td>18</td>
<td>21.2</td>
<td>1.9</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>19.9</td>
<td>1.7</td>
<td>24.5</td>
</tr>
<tr>
<td>26</td>
<td>21.5</td>
<td>2</td>
<td>27.5</td>
</tr>
<tr>
<td>32</td>
<td>23.1</td>
<td>1.6</td>
<td>25.4</td>
</tr>
</tbody>
</table>

After cutting down, one test trunk of 1m length was sawn from each test tree. Length of test trunk started at breast height (1.3 m), downwards to root collar. Afterwards, these 1 m long trunks were sawn into bark to bark cores approximately 6 cm thick. One core was
oriented north-south, and the others from east and west side (Figure 2). Cores were then submitted to natural drying on dry and drafted stock. After the cores had dried to a water content of about 12%, test samples were sawn. Test samples for investigation of physical properties were made according to HRN ISO 13061-2: 2015.

![Figure 2. Bark to bark cores (north – south, east and west)](image)

3. RESULTS AND DISCUSSION

Table 3. Statistical values of physical properties of Villafranca and white poplar wood

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Villafranca</th>
<th></th>
<th></th>
<th></th>
<th>White poplar</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ρₐ</td>
<td>g/cm³</td>
<td>85</td>
<td>0.236</td>
<td>0.369</td>
<td>0.286</td>
<td>0.047</td>
<td>11.93</td>
<td></td>
</tr>
<tr>
<td>ρ_max</td>
<td>g/cm³</td>
<td>85</td>
<td>0.792</td>
<td>1.063</td>
<td>0.902</td>
<td>0.039</td>
<td>11.22</td>
<td></td>
</tr>
<tr>
<td>ρ_y</td>
<td>g/cm³</td>
<td>85</td>
<td>0.213</td>
<td>0.338</td>
<td>0.259</td>
<td>0.047</td>
<td>11.93</td>
<td></td>
</tr>
<tr>
<td>β_l max</td>
<td>%</td>
<td>85</td>
<td>0.1</td>
<td>0.8</td>
<td>0.2</td>
<td>0.39</td>
<td>74.89</td>
<td></td>
</tr>
<tr>
<td>β_r max</td>
<td>%</td>
<td>85</td>
<td>2.0</td>
<td>4.9</td>
<td>3.2</td>
<td>0.21</td>
<td>74.89</td>
<td></td>
</tr>
<tr>
<td>β_t max</td>
<td>%</td>
<td>85</td>
<td>4.4</td>
<td>9.6</td>
<td>7.4</td>
<td>0.21</td>
<td>74.89</td>
<td></td>
</tr>
<tr>
<td>β_v max</td>
<td>%</td>
<td>85</td>
<td>7.6</td>
<td>15.6</td>
<td>10.7</td>
<td>1.21</td>
<td>27.09</td>
<td></td>
</tr>
<tr>
<td>W_max</td>
<td>%</td>
<td>85</td>
<td>184</td>
<td>315</td>
<td>250</td>
<td>1.44</td>
<td>16.33</td>
<td></td>
</tr>
<tr>
<td>Rw</td>
<td>mm</td>
<td>85</td>
<td>4.9</td>
<td>10.2</td>
<td>8.0</td>
<td>2.2</td>
<td>37.07</td>
<td></td>
</tr>
</tbody>
</table>

Note: ρₐ - density in absolutely dry condition, ρ_max - density at maximal moisture content, ρ_y – basic density, β_l max - total longitudinal shrinkage, β_r max - total radial shrinkage, β_t max - total tangential shrinkage and β_v max - total volumetric shrinkage, W_max – maximal moisture content, Rw – average ring width of sample.

Wood quality is affected by many factors. One of them are physical properties of wood, especially wood density and dimensional stability. Average wood density in absolutely dry
condition of white poplar from Varaždin region is 27% higher than in clone ‘Villafranca’ from the same site (Table 3 and Figure 3). Average wood density at maximal moisture content of white poplar is 9% higher than in clone ‘Villafranca’ (Table 3 and Figure 3). Average basic density of white poplar is 25% higher than in clone ‘Villafranca’ (Table 3 and Figure 3).

Average basic density values in 'Villafranca' is 0.26 g/cm³. The values from our results are smaller than findings of other authors for hybrid poplars (Beaudoin et al., 1992; Hernández et al., 1998; Zhang et al., 2003). According to them, basic wood density ranges between 0.3 and 0.4 g/cm³. Average total shrinkages of white poplar wood are 20 to 30% higher than in clone ‘Villafranca’ (Table 3 and Figure 4).

The average values of shrinkages in clone 'Villafranca' wood are similar to some native poplars (Peck, 1957; Jessome, 1977) and poplar clones (Koubaa et al., 1998).

All investigated properties are significantly different between white poplar wood and clone 'Villafranca' (Table 4).

Table 4. Mann Whitney test of difference between physical properties of Villafranca and white poplar wood

<table>
<thead>
<tr>
<th>Property</th>
<th>Rank Sum 1</th>
<th>Rank Sum 2</th>
<th>Z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_0)</td>
<td>3953.000</td>
<td>22843.00</td>
<td>-12.0595</td>
<td>0.00</td>
</tr>
<tr>
<td>(\rho_{\text{max}})</td>
<td>5463.000</td>
<td>21333.00</td>
<td>-8.97671</td>
<td>0.000000</td>
</tr>
<tr>
<td>(\rho_y)</td>
<td>4041.000</td>
<td>22755.00</td>
<td>-11.8798</td>
<td>0.00</td>
</tr>
<tr>
<td>(\beta_{\text{max}})</td>
<td>8605.000</td>
<td>18191.00</td>
<td>-2.56215</td>
<td>0.010403</td>
</tr>
<tr>
<td>(\beta_{\text{max}})</td>
<td>5463.500</td>
<td>21332.50</td>
<td>-8.97569</td>
<td>0.000000</td>
</tr>
<tr>
<td>(\beta_{1\text{max}})</td>
<td>6006.000</td>
<td>20790.00</td>
<td>-7.86815</td>
<td>0.000000</td>
</tr>
<tr>
<td>(\beta_{\text{max}})</td>
<td>5776.000</td>
<td>21020.00</td>
<td>-8.33770</td>
<td>0.000000</td>
</tr>
<tr>
<td>(W_{\text{max}})</td>
<td>15088.00</td>
<td>11708.00</td>
<td>10.67324</td>
<td>0.000000</td>
</tr>
<tr>
<td>(R_{\text{w}})</td>
<td>15086.00</td>
<td>11710.00</td>
<td>10.66916</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Note: \(\rho_0 \) – density in absolute dry condition, \(\rho_{\text{max}} \) - density at maximal moisture content, \(\rho_y \) – basic density

Figure 3. Statistical analyzes of density between white poplar and clone 'Villafranca'
4. CONCLUSIONS

Clone performances generally remain constant from one environment to another. Significant differences in densities and shrinkages between white poplar and clone 'Villafranca' were occurred.

The differences between investigated properties vary from 10 to 30%. Although clone 'Villafranca' wood has lower density it has higher dimensional stability than white poplar wood.

Therefore, for better understanding of wood structure in white poplar clone 'Villafranca', mechanical properties should be investigated in the future.

Acknowledgements: The examined issues constitute a part of the project: Kratkoročna financijska potpora istraživanju 2015; Anatomska, fizikalna, mehanička i kemijska svojstva drva bijele topole (Populus alba L.) i klonova bijele topole uz rijeku Dravu.

This work was financed by University of Zagreb, Croatia.

REFERENCES

Isebrands, J. G.; Richardson, J. (2014): Poplars and willows: trees for society and the environment, FAO.

ORGANISERS

UNIVERSITY OF ZAGREB - FACULTY OF FORESTRY
WOOD SCIENCE AND TECHNOLOGY DEPARTMENT, BIOTECHNICAL FACULTY,
UNIVERSITY OF LJUBLJANA

FACULTY OF FORESTRY AND WOOD SCIENCES, CZECH UNIVERSITY OF LIFE
SCIENCES PRAGUE

FOREST PRODUCTS SOCIETY
INNOVAWOOD

IN COLLABORATION WITH

ACADEMY OF FORESTRY
CROATIAN ACADEMY OF ENGINEERING

THE SCIENTIFIC COUNCIL FOR AGRICULTURE AND FORESTRY – CROATIAN
ACADEMY OF SCIENCES AND ARTS

ASSOCIATION OF ENGINEERS OF WOOD TECHNOLOGY
ZAGREB FAIR

SUPPORTED BY

MINISTRY OF SCIENCE AND EDUCATION
MINISTRY OF ECONOMY, ENTREPRENEURSHIP AND CRAFTS
MINISTRY OF AGRICULTURE
CROATIAN CHAMBER OF ENGINEERS OF FORESTRY AND WOOD TECHNOLOGY
29th International Conference on Wood Science and Technology (ICWST)

IMPLEMENTATION OF WOOD SCIENCE IN WOODWORKING SECTOR

PROCEEDINGS

Zagreb 6th – 7th December 2018
Disclaimer:

This book of papers compiles the papers and posters presented at the 29th International Conference on Wood Science and Technology (ICWST) Implementation of wood science in woodworking sector held in Zagreb, Croatia on 6th and 7th December, 2018. The opinions expressed within are those of the authors and not necessarily represent those of the host, the editors and or any institution included in organisation of this conference.

Although all reasonable efforts were made by the organising team to ensure the scientific quality of the contents of these abstracts, the final responsibility for the content therein and in the final conference proceeding remains with the respective authors. The editors accept no responsibility for the information contained in the proceedings. The editors are not responsible for the contents of external websites referred to in this publication.
Publisher:
UNIVERSITY OF ZAGREB - FACULTY OF FORESTRY

Organizers:
UNIVERSITY OF ZAGREB - FACULTY OF FORESTRY
WOOD SCIENCE AND TECHNOLOGY DEPARTMENT, BIOTECHNICAL FACULTY, UNIVERSITY OF LJUBLJANA
FACULTY OF FORESTRY AND WOOD SCIENCES, CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
FOREST PRODUCTS SOCIETY
INNOVAWOOD

In collaboration with:
ACADEMY OF FORESTRY
CROATIAN ACADEMY OF ENGINEERING
THE SCIENTIFIC COUNCIL FOR AGRICULTURE AND FORESTRY – CROATIAN ACADEMY OF SCIENCES AND ARTS
ASSOCIATION OF ENGINEERS OF WOOD TECHNOLOGY
ZAGREB FAIR

Organizing committee:
Prof. Vladimir Andročec, PhD (Croatia), Academic Igor Anić, PhD (Croatia), Prof. Marian Babiak, PhD (Slovakia), Nada Banek, BSc (Croatia), Assoc. Prof. David B. DeVallance, PhD (USA), Assist. Prof. Danijela Domljan, PhD (Croatia), Assoc. Prof. Beata Fabisiak, PhD (Poland), Prof. Milan Gaff, PhD (Czech Republic), Prof. Ivica Grbac, PhD (Croatia), Assoc. Prof. Marin Hasan, PhD (Croatia), Prof. Miha Humar, PhD (Slovenia), Prof. Borche Iliev, PhD (Macedonia), Iva Ištok, PhD (Croatia), Prof. Vladimir Jambreković, PhD (Croatia), Assoc. Prof. Vassil Jivkov, PhD (Bulgaria), Prof. Josip Margaletić, PhD (Croatia), Assist. Prof. Josip Miklečić, PhD (Croatia), Academic Slavko Matić, PhD (Croatia), Assoc. Prof. Sergej Medved, PhD (Slovenia), Prof. Milan Oršanić, PhD (Croatia), Prof. Tibor Pentek, PhD (Croatia), Ivana Perić, PhD (Croatia), Prof. Stjepan Pervan (Croatia), Mariano Perez Campos, PhD (Spain), Assist. Prof. Andreja Pirc Barčić, PhD (Croatia), Prof. Tomislav Poršinsky, PhD (Croatia), Assist. Prof. Nikola Španić, PhD (Croatia), Dina Tomšić, PhD (Croatia), Silvija Zec, BSc (Croatia), Assist. Prof. Vjekoslav Živković, PhD (Croatia), Assoc. Prof. Ivica Župčić, PhD (Croatia)

Editors:
Assoc. Prof. Ivica Župčić, PhD
Assist. Prof. Nikola Španić, PhD

Technical editor:
Assist. Prof. Nikola Španić, PhD

Assistant to Technical editor:
Ms Dubravka Cvetan

Cover photo:
Assist. Prof. Danijela Domljan, PhD

Honorary president of the Organizing committee:
Prof. Ivica Grbac, PhD

Programme committee and reviewers:
Assist. Prof. Christian Brischke, PhD (Germany), Prof. Andrija Bogner, PhD (Croatia), Assist. Prof. Danijela Domljan, PhD (Croatia), Prof. Milan Gaff, PhD (Croatia), Prof. Ivica Grbac, PhD (Croatia), Prof. Miha Humar, PhD (Slovenia), Prof. Mark Irle, PhD (Belgium), Prof. Vladimir Jambreković, PhD (Croatia), Prof. Vlatka Jirouš-Rajković, PhD (Croatia), Prof. Boris Ljuljka, PhD (Croatia), Assist. Prof. Josip Miklečić, PhD (Croatia), Prof. Stjepan Pervan, PhD (Croatia), Peter Rademacher, PhD (Hungary), Prof. Andreas Rapp, PhD (Germany), Prof. Milan Šernek, PhD (Slovenia), Prof. Timothy M. Young, PhD (USA), Assist. Prof. Vjekoslav Živković, PhD (Croatia), Assoc. Prof. Ivica Župčić, PhD (Croatia)

EDITION
300 copies
FOREWORD

Continuous changes on international market open up new horizons and opportunities, and the new strategies adopted by Europe and the world bring new concepts that need to be adapted and followed. This concept seeks increased social cohesion, striking with the harmful effects of climate change, nature preservation and the creation of a healthy environment. At the same time, creative potentials are open to new knowledge and innovative processes whose primary objective is to adapt to the needs of customers and the environment.

One of the activities carried out in recent years in order to preserve and stimulate rational utilization of raw material is certainly the traditional international scientific conference AMBIENTA. During its continuous sequence in the last 28 years it has become a platform for meeting and networking among scientists, teachers, researchers, students and professionals.

This year's conference, the third held under the title "The implementation of science in the woodworking sector" aims to ensure a multidisciplinary forum where all the participants have the opportunity to present and discuss innovations, trends and practical challenges they have faced in the world of wood science and technology, but also in relation to other materials, technologies, design and other related topics whose aim is to upgrade the wood industry.

We hope that this year's conference will contribute to awareness raising about the significance of wood as an irreplaceable natural raw material, and that the application of scientific research has a positive impact on the wood sector as well as any user of wood.

Assoc. Prof. Ivica Župčić, PhD
CONTENTS

1. DeVallance, D. - Nan, N.
 Carbonization of hardwoods for use in electrical and composite applications
 1

2. Rademacher, P. - Rousek, R. - Pařil, P. - Baar, J. - Horniček, S. - Paschová, Z. -
 Németh, R. - Hofmann, T. - Fodor, F. - Koch, G. - Kuttar, A.
 Intensive utilization of forest production & wood material : Wood usage from native properties to
 wood modification
 3

3. Young, T. M.
 Quantifying interactions in manufacturing using regression tree models – A useful inductive itep
 for planning a designed experiment
 5

 The influence of various factors on adhesion strength between MDF and PVC foil in vacuum
 membrane press technology
 7

5. Antonović, A. - Barčić, D. - Spanić, N. - Medved, S. - Stanešić, J. - Podvorec, T. -
 Lozančić, M. - Štriga, S. - Ištvanić, J.
 Chemical composition of fired Aleppo pine (Pinus halepensis Mill.) sapwood
 13

6. Atanasov, V. - Kovatchev, G.
 Study of the cutting power in longitudinal milling of Oak wood
 27

7. Băder, M. - Németh, R.
 Production technology and properties of longitudinally compressed wood
 35

8. Bak, M. - Németh, R.
 Metal nanoparticles as wood preservatives and their leaching resistance
 45

 de Sousa Carvalho, H.
 LiDAR technology and linear dynamical systems for classification of tropical tree species
 55

10. Domljan, D. - Réka Antal, M. - György Horváth, P.
 IT school table design using functional analysis
 63

 Design of exterior furniture from high pressure laminate
 71

 The thermal modification of Padouk (Pterocarpus soyauxii) and the effect of synthetic flame-
 retardants on its selected fire characteristics
 79

13. Hosseinporzia, R. - Adamopoulus, S. - Mai, C.
 Analysis of the vapour sorption behaviour of wood modified with thermosetting resins with
 Hailwood-Horrobin and Excess Surface Work models
 87

14. Haxhimustafa, X.
 Ceiling elements with timber concrete construction and wood-concrete layers
 93

15. Kamboj, G. - Sikora, A.
 The influence of geometry on the stiffness of specific dowel and corner finger joints
 101

16. Kovatchev, G. - Atanasov, V.
 Determination of vibration during longitudinal milling of Meranti and Oak Wood
 109

17. Merdzhanov, V. - Krystofiak, T. - Angelski, D.
 Strength of adhesion of medium density fibreboards (MDF) parts lined with vinyl foil in a
 membrane press with different technological parameters
 117

18. Merhar, M. - Gornik Bučar, D.
 Machining properties of some invasive tree species in Slovenia
 125

19. Németh, R. - Ott, Á.
 Changes of equilibrium moisture content and colour during drying process of Robinia and Poplar
 129

20. Prasetyo, V. E. - Ozarska, B. - Belleville, B.
 Furniture production efficiency in the Indonesian context
 131

21. Pryadilina, N. - Semin, A.
 Status and prospects of the Russian woodworking sector
 141

 Comparison of physical properties of White Poplar and clone 'Villafranca' wood
 149

23. Sedlecký, M. - Fatemeh, R. - Gaff, F. - Németh, R.
 Evaluation of laser and mechanical methods for measuring roughness and waviness of milled
 surface of Spruce and Oak
 155

24. Smardzewski, J. - Prekrat, S.
 Auxetic structures in layered furniture panels
 163
<table>
<thead>
<tr>
<th>25. Staneva, N. - Genchev, Y. - Hristodorova, D.</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative finite elements analysis of deformations in an upholstered furniture skeleton with side plates from PB, OSB and plywood</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>26. Šafran, B. - Jug, M. - Radmanović, K. - Rastija, M. - Frančeski, M. - Risović, S.</th>
<th>183</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential and properties of biomass on island of Brač for sustainable pellet production</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27. Vitchev, P. - Gochev, Z.</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study on quality of milling surfaces depending on the parameters of technological process</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>28. Vuglek, T. - Iliev, B. - Grbac, I. - Domljan, D.</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>An analysis of wooden toys that encourage children’s growth and development</td>
<td></td>
</tr>
</tbody>
</table>