Comparison of Liquid and Solid Digestate Fractions as Replacements for Synthetic Nitrogen Fertilizers in Maize Production in Croatia

Mihaela Šatvar1,3, Željko Jukić2, Zvonimir Stipić1, Ivona Sigurnjak3, Erik Meers3, Lepomir Čoga1

1University of Zagreb, Faculty of Agriculture, Department of Plant Nutrition, Zagreb, Croatia
(e-mail: msatvar@agr.hr, Mihaela.Satvar@Ugent.be)
2University of Zagreb, Faculty of Agriculture, Department of Crop Protection
3University of Ghent, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Ghent, Belgium

INTRODUCTION
Biogas is a renewable source of energy obtained from anaerobic digestion [1]. This process also produces large amounts of post-digestion matter, called digestate, that is rarely used as a fertilizer in Eastern Europe due to the lack of knowledge. The digestate can be separated into solid and liquid fractions, which may be suitable for land application [2-5].

MATERIALS AND METHODS

Experimental design

Eight different treatment were applied on a silt loam soil in Maksimir, Zagreb experimental field. All treatments had four repetitions: control (1), mineral fertilizer NPK (2), liquid cattle manure (3), solid fraction SF of digestate (4), liquid fraction LF of digestate (5), a mix of solid and liquid fraction of digestate (6), a mix of NPK and SF (7) and a mix of NPK with LF (8). 140 kg N/ha was applied to each treatment. As a test crop, maize was sown on April 27 and harvested on September 28, 2018.

RESULTS

Results showed that NPK and the combination of NPK with LF resulted in higher yield as compare to other treatments (Figure 1.).

CONCLUSION

The mixture of digestate with NPK resulted in grain yield similar to the treatment with the synthetic NPK fertilizer. This shows that digestate has a similar effect on maize production and yield as this might lead to cost reduction of used synthetic fertilizer on arable land. This experiment will be performed in the following year.

Table 1. Soil characteristics before fertilization

<table>
<thead>
<tr>
<th>Depth cm</th>
<th>pH H2O</th>
<th>pH KCl</th>
<th>Humus %</th>
<th>Nmin kg/ha of soil</th>
<th>P2O5 mg/100 g of soil</th>
<th>K2O mg/100 g of soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>5.3-5.6</td>
<td>4.1-4.4</td>
<td>1.6-1.7</td>
<td>37.7-40.0</td>
<td>15.2-18.3</td>
<td>20.0-24.0</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of organic fertilizers

<table>
<thead>
<tr>
<th>pH H2O (%)</th>
<th>N FW (%)</th>
<th>P2O5 mg/100 g FW (%)</th>
<th>K2O mg/100 g FW (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid cattle manure</td>
<td>6.6</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Solid fraction of digestate</td>
<td>8.7</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Liquid fraction of digestate</td>
<td>7.7</td>
<td>0.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Figure 1. Dry grain yield per ha (14% moisture) on different treatments: control (1), mineral fertilizer NPK (2), liquid cattle manure (3), SF of digestate (4), LF of digestate (5), a mix of SF and LF of digestate (6), a mix of NPK and SF (7) and a mix of NPK with LF (8).