crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 790640

Časopis

Autori: Sušanj, Ivana; Ožanić, Nevenka; Marović, Ivan
Naslov: Methodology for Developing Hydrological Models Based on an Artificial Neural Network to Establish an Early Warning System in Small Catchments
( Methodology for Developing Hydrological Models Based on an Artificial Neural Network to Establish an Early Warning System in Small Catchments )
Izvornik: Advances in Meteorology (1687-9309) (2016); 9125219-1-9125219-14
Vrsta rada: članak
Ključne riječi: Hydrological model; Small chatcment; artificial neural network; Early warning system
( Hydrological model; Small chatcment; artificial neural network; Early warning system )
Sažetak:
In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water.Thus, it is important to prevent consequences via an early warning system (EWS) to announce the possible occurrence of a hazard. The aimand objective of this paper are to investigate the possibility of implementing an EWS in a small- scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN) as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.
Projekt / tema: Hidrologija vodnih resursa, identifikacija rizika od poplava, blatnih tokova na krškom području
Izvorni jezik: eng
Rad je indeksiran u
bazama podataka:
Current Contents Connect (CCC)
Scopus
SCI-EXP, SSCI i/ili A&HCI
Science Citation Index Expanded (SCI-EXP) (sastavni dio Web of Science Core Collectiona)
Kategorija: Znanstveni
Znanstvena područja:
Građevinarstvo,Računarstvo
Puni text rada: 790640.430217-1.pdf (tekst priložen 18. Pro. 2015. u 12:14 sati)
URL Internet adrese: https://www.hindawi.com/journals/amete/2016/9125219/
http://dx.doi.org/10.1155/2016/9125219
Broj citata:
Altmetric:
DOI: 10.1155/2016/9125219
URL cjelovitog teksta:
Časopis izlazi u samo elektroničkom izdanju: DA
Google Scholar: Methodology for Developing Hydrological Models Based on an Artificial Neural Network to Establish an Early Warning System in Small Catchments
Upisao u CROSBI: Ivana Sušanj (isusanj@gradri.uniri.hr), 18. Pro. 2015. u 12:14 sati
Napomene:
Indexing: Expanded Academic ASAP ; Expanded Academic Index ; GeoRef ; Google Scholar ; GREENR ; InfoTrac Custom journals ; J-Gate Portal ; Journal Citation Reports-Science Edition ; Meteorological and Geoastrophysical Abstracts ; Oceanic Abstracts ; Online Access to Research in the Environment (OARE) ; ProQuest Advanced Technologies and Aerospace Collection ; ProQuest Atmospheric Science Journals ; ProQuest Natural Science Collection ; ProQuest SciTech Collection ; ProQuest Technology Collection ; SafetyLit ; Scopus ; TEMA Database



  Verzija za printanje   za tiskati


upomoc
foot_4