Both, experimental investigation and finite element analysis of single-lap adhesive joints subjected to tension have been done to find out an optimal overlap length. As the adherend material aluminum was considered with the two component high-strength engineering adhesive for the bonding of the layers. The thickness of the sheet metal layer was 1, 95 mm, while adhesive was 0, 15 mm thick. The width of all thin plates was 30 mm, but the overlap length varied as 15, 20, 30, 40 and 60 mm. Real mechanical properties of all materials in the joint have been determined experimentally. Obtained results proved that the overlap length affects directly the joint tensile strength, where an optimum value of overlap length can be defined. Finite element analysis of stress and strain fields could help to determine the moment when the crack failure spreads from overlap ends to the inside. In such a manner it could be better understand complex mechanisms of failure of adhesive joints. |