crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 768444

Zbornik radova

Autori: Ivašić-Kos, Marina; Pobar, Miran; Ipšić, Ivo
Naslov: Object Level vs. Scene Level Image Annotation
( Object Level vs. Scene Level Image Annotation )
Izvornik: Recent Advances in Electrical and Electronic Engineering, Proceedings of the 3rd International Conference on Circuits, Systems, Communications, Computers and Applications (CSCCA '14) / Mastorakis, Nikos E. ; Nakamatsu, Kazumi ; Paspalakis, Emmanuel (ur.). - Firenca : WSEAS Press , 2014. 162-168 (ISBN: 978-960-474-399-5).
Skup: 3rd International Conference on Circuits, Systems, Communications, Computers and Applications (CSCCA '14)
Mjesto i datum: Firenca, Italija, 22-24.11.2014.
Ključne riječi: image annotation; multi-label classification; scene classification
( image annotation; multi-label classification; scene classification )
Sažetak:
Automatic annotation methods deal with visual features such as color, texture, structure, etc. that can be extracted from the raw image data, and can automatically assign keywords to an unlabeled image. The major goal is to bridge the so-called semantic gap between the available features and keywords that could be useful to humans for image retrieval. Although different people will most likely annotate the same image with different words, most people when searching for images use object or scene labels. Therefore, the aim of this paper is to annotate the images with both object and scene labels, and to compare the performance of automatic image annotation both levels. The assumption is that there can be many objects in each image, but an image can be classified into one scene. The same features sets composed of dominant colors and GIST descriptors for the both annotation levels were used, but different classification methods due to the multi-label classification problem present in object level annotation. The scene level annotation task was performed using the Naïve Bayes classifier and the object level annotation using the RAKEL and ML-kNN multi-label classification methods. The Naïve Bayes classifier was also used in this case, but on transformed data. Preliminary results of scene and object level annotations of outdoor images are compared using different feature subsets.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Cjeloviti rad (više od 1500 riječi)
Vrsta recenzije: Međunarodna recenzija
Izvorni jezik: eng
Kategorija: Znanstveni
Znanstvena područja:
Računarstvo,Informacijske i komunikacijske znanosti
Upisao u CROSBI: Marina Ivašić (Marina.Ivasic@inf.uniri.hr), 7. Srp. 2015. u 16:17 sati



Verzija za printanje   za tiskati


upomoc
foot_4