crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 781601

Zbornik radova

Autori: Ivašić-Kos, Marina; Pobar, Miran; Ribarić, Slobodan
Naslov: Fuzzy Knowledge-Based Image Annotation Refinement
( Fuzzy Knowledge-Based Image Annotation Refinement )
Izvornik: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition IPCV'15 / Arabnia, Hamid R. ; Deligiannidis, Leonidas ; Tinetti, Fernando G. (ur.). - Las Vegas, Nevada, USA : The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) , 2015. 284-290 (ISBN: 1-60132-404-9).
Skup: International Conference on Image Processing, Computer Vision, and Pattern Recognition IPCV'15
Mjesto i datum: Las Vegas, SAD, 27-30.7.2015.
Ključne riječi: automatic image annotation; annotation refinement; fuzzy knowledge representation scheme; fuzzy inference
( automatic image annotation; annotation refinement; fuzzy knowledge representation scheme; fuzzy inference )
Sažetak:
Automatic image annotation methods automatically assign labels to images in order to facilitate tasks such as image retrieval. Incorrect labels may negatively influence the search results so image annotation should be as accurate as possible. Labels pertaining to objects or to whole scenes are commonly used for image annotation, and precision is especially important in case when scene labels are inferred from objects, as errors in the object labels may propagate to the scene level. To improve the annotation precision, the idea is to infer which labels are incorrect using the context of other labels and the knowledge about objects and their relations. This procedure is here referred to as annotation refinement. The proposed approach used in this paper includes a fuzzy knowledge base and uses the fuzzy inference algorithms to detect and discard automatically obtained object labels that do not fit the context of other detected objects.
Vrsta sudjelovanja: Predavanje
Vrsta prezentacije u zborniku: Cjeloviti rad (više od 1500 riječi)
Vrsta recenzije: Međunarodna recenzija
Projekt / tema: 036-0361935-1954
Izvorni jezik: eng
Kategorija: Znanstveni
Znanstvena područja:
Računarstvo,Informacijske i komunikacijske znanosti
Upisao u CROSBI: Miran Pobar (mpobar@inf.uniri.hr), 15. Lis. 2015. u 11:21 sati



Verzija za printanje   za tiskati


upomoc
foot_4