crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 839698

Časopis

Autori: Bosner, Tina; Rogina, Mladen
Naslov: Quadratic convergence of approximations by CCC-Schoenberg operators
( Quadratic convergence of approximations by CCC-Schoenberg operators )
Izvornik: Numerische Mathematik (0029-599X) 135 (2017), 4; 1253-1287
Vrsta rada: članak
Ključne riječi: CCC-splines ; Marsden's identity ; Greville points ; CCC-Schoenberg operators
( CCC-splines ; Marsden's identity ; Greville points ; CCC-Schoenberg operators )
Sažetak:
We generalize to the Canonical Complete Chebyshev splines some properties already known for Extended Chebyshev and piecewise Extended Chebyshev splines, like Marsden identity and Greville points. Also, we represent an interesting algorithm which leads to numerically stable expressions for the Greville points for CCC-splines. We show that any CCC-spline space provides us with infinite number of operators of the Schoenberg-type, and we give a simple characterization of them. After proving few important properties, we establish a sufficient condition for quadratic convergence of approximations by CCC-Schoenberg operators to a given function.
Projekt / tema: 037-1193086-2771
Izvorni jezik: eng
Rad je indeksiran u
bazama podataka:
Current Contents Connect (CCC)
Scopus
SCI-EXP, SSCI i/ili A&HCI
Science Citation Index Expanded (SCI-EXP) (sastavni dio Web of Science Core Collectiona)
Kategorija: Znanstveni
Znanstvena područja:
Matematika
URL Internet adrese: http://link.springer.com/article/10.1007/s00211-016-0831-0
Broj citata:
Altmetric:
DOI: 10.1007/s00211-016-0831-0
URL cjelovitog teksta:
Google Scholar: Quadratic convergence of approximations by CCC-Schoenberg operators
Upisao u CROSBI: Tina Bosner (tinab@math.hr), 18. Lis. 2016. u 17:37 sati



  Verzija za printanje   za tiskati


upomoc
foot_4