crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 971958

Časopis

Autori: Crnković, Dean; Mikulić Crnković, Vedrana; Švob, Andrea
Naslov: Transitive combinatorial structures invariant under some subgroups of S(6, 2) and related codes
( Transitive combinatorial structures invariant under some subgroups of S(6, 2) and related codes )
Izvornik: Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze Fisiche, Matematiche e Naturali (1825-1242) 96 (2018), S2;
Vrsta rada: članak
Ključne riječi: transitive group, $t$-design, strongly regular graph, distance-regular graph, flag-transitive design, linear code.
( transitive group, $t$-design, strongly regular graph, distance-regular graph, flag-transitive design, linear code. )
Sažetak:
In this paper we define combinatorial structures on the conjugacy classes of the maximal subgroups of the symplectic group S(6, 2) under the action of two subgroups of S(6, 2) isomorphic to U(3, 3) and U(4, 2). Further, we examine binary and ternary linear codes obtained from the row span of the incidence matrices of the block designs (respectively adjacency matrices of the strongly regular graphs) obtained in the paper. Moreover, from the codes examined we construct the designs supported by the codewords as well as SRG and DRG, respectively.
Projekt / tema: HRZZ-IP-2013-11-1637
Izvorni jezik: eng
Rad je indeksiran u
bazama podataka:
Scopus
Emerging Sources Citation Index (ESCI) (sastavni dio Web of Science Core Collectiona)
Kategorija: Znanstveni
Znanstvena područja:
Matematika
Broj citata:
Altmetric:
DOI: 10.1478/AAPP.96S2A5
URL cjelovitog teksta:
Google Scholar: Transitive combinatorial structures invariant under some subgroups of S(6, 2) and related codes
Upisao u CROSBI: Andrea Švob (asvob@math.uniri.hr), 2. Pro. 2018. u 19:14 sati



Verzija za printanje   za tiskati


upomoc
foot_4